www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Lineare Unabgängigkeit
Lineare Unabgängigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Unabgängigkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:26 Mo 31.03.2008
Autor: tobe

Aufgabe
Zeigen Sie, dass die Funktionen [mm] f_{n} [/mm] : [mm] \IR \to \IR [/mm]    
[mm] f_{n}=e^{nx} n\varepsilon\IN [/mm] linear unabhängig sind.

Ich muss doch eigentlich nur beweisen, dass:
[mm] a_{1} e^{nx}+ a_{2} e^{(n-1)x} [/mm] + ... + [mm] a_{3} [/mm] e + [mm] a_{4} \not= [/mm] 0

mit [mm] a_{1}, a_{2}, a_{3} [/mm] ... [mm] \not=0 [/mm]

gilt oder? Doch ich weiss nicht so ganz wie ich das Anstellen soll.

Vielen Dank für eure Unterstützung :D

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lineare Unabgängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:41 Mo 31.03.2008
Autor: angela.h.b.


> Zeigen Sie, dass die Funktionen [mm]f_{n}[/mm] : [mm]\IR \to \IR[/mm]    
> [mm]f_{n}=e^{nx} n\varepsilon\IN[/mm] linear unabhängig sind.
>  
> Ich muss doch eigentlich nur beweisen, dass:
>  [mm]a_{1} e^{nx}+ a_{2} e^{(n-1)x}[/mm] + ... + [mm]a_{3}[/mm] e + [mm]a_{4} \not=[/mm]
> 0
>  
> mit [mm]a_{1}, a_{2}, a_{3}[/mm] ... [mm]\not=0[/mm]
>  
> gilt oder?

Hallo,

nicht ganz:

Du mußt zeigen, daß aus

[mm] a_0e^0 [/mm] + [mm] a_1e^x [/mm] + [mm] a_2e^{2x} [/mm] + ... + [mm] a_ne^{nx}=0 [/mm]    ( Nullfunktion )

folgt, daß [mm] a_0=a-1=...=a_n=0 [/mm] gilt.

(Du hatest oben einen Exponenten vergessen und die Kontraposition meiner Aussage verwendet - letzteres ist nicht falsch, aber ich stell's mir schwierig vor.)

Den Beweis kannst Du mit vollständiger Induktion führen, versuch's mal.

(Wenn Du beim Induktionsschluß bist, benötigst Du zwei Tricks, welche ich Dir schonmal verrate: 1.ableiten, 2. Multiplikation mit [mm] e^{-x}) [/mm]

Gruß v. Angela



Bezug
                
Bezug
Lineare Unabgängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:01 Mo 31.03.2008
Autor: tobe

Zum Verständnis wiederhole ich noch einmal:
Ich muss also zeigen, dass der Term nur 0 werden kann, wenn [mm] a_{1} [/mm] , [mm] a_{2}, [/mm] ..., [mm] a_{n} [/mm] = 0 ist?

Lg Tobi


Bezug
                        
Bezug
Lineare Unabgängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:05 Mo 31.03.2008
Autor: angela.h.b.


> Zum Verständnis wiederhole ich noch einmal:
>  Ich muss also zeigen, dass der Term nur 0 werden kann,
> wenn [mm]a_{1}[/mm] , [mm]a_{2},[/mm] ..., [mm]a_{n}[/mm] = 0 ist?

Genau.

Gruß v. Angela


Bezug
        
Bezug
Lineare Unabgängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:07 Mo 31.03.2008
Autor: Merle23

Wurde schon mal vor kurzem gestellt und zufriedenstellend beantwortet:

Hier


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de