www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Lineares Gleichungssystem
Lineares Gleichungssystem < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineares Gleichungssystem: Unendlich viele Lösungen
Status: (Frage) beantwortet Status 
Datum: 13:01 Fr 19.09.2014
Autor: MeMeansMe

Aufgabe
Seien $ m > n $ natürliche Zahlen. Wähle reelle Zahlen [mm] a_{ij} [/mm] für alle $ 1 [mm] \le [/mm] i [mm] \le [/mm] m $ und alle $ 1 [mm] \le [/mm] j [mm] \le [/mm] n $. Zeige, dass das folgende lineare Gleichungssystem unendlich viele Lösungen [mm] (c_1, \cdots, c_m) [/mm] hat:

$ [mm] a_{11}c_1 [/mm] + [mm] \cdots [/mm] + [mm] a_{1m}c_m [/mm] = 0 $
       [mm] \vdots [/mm]
$ [mm] a_{n1}c_1 [/mm] + [mm] \cdots [/mm] + [mm] a_{nm}c_m [/mm] = 0 $

[Hinweis. Wenn $ [mm] a_{11} [/mm] = [mm] \cdots [/mm] = 0 $, wähle [mm] c_1 [/mm] willkürlich und $ [mm] c_2 [/mm] = [mm] \cdots [/mm] = [mm] c_m [/mm] = 0 $. Wir dürfen also annehmen, dass [mm] a_{i1} \not= [/mm] 0 für bestimmte $ i $ und indem man eventuell die Zeilen tauscht, dürfen wir außerdem annehmen, dass [mm] a_{11} \not= [/mm] 0. Löse dan [mm] c_1 [/mm] aus dem ersten Vergleich und benutze das Ergebnis für die restlichen Vergleiche.]

Hallo allesamt,

was der Hinweis bedeutet, ist mir nicht ganz klar, darum versuch ich einfach mal mein Glück, ohne besonders darauf einzugehen.

Wenn man die erste Zeile des LGS mit [mm] \bruch{1}{a_{11}} [/mm] multipliziert und danach die neue erste Zeile von allen anderen subtrahiert, wobei man die erste Zeile mit [mm] a_{n1} [/mm] multipliziert, fallen alle Terme mit [mm] c_1 [/mm] in allen Zeilen außer der ersten weg. Man kann jetzt das gleiche Verfahren anwenden auf die zweite Zeile, um nur noch ein [mm] c_2 [/mm] zu erhalten. Weil ja $ m > n $, d.h. es gibt mehr Variablen als Gleichungen, erhält man nach vielen Schritten mindestens eine Zeile mit $ 0=0 $. Das bedeutet, dass das Gleichungssystem unendlich viele Lösungen haben muss, da man immer Variablen frei wählen kann.

Ist das so gültig und logisch?

Danke für jede Hilfe :)

        
Bezug
Lineares Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Fr 19.09.2014
Autor: leduart

Hallo
genau um mit [mm] 1/a_{11} [/mm] zu multiplizieren, brazcgst du den Hinweis, falls [mm] a_{11}= [/mm] 0 kannst du das ja nicht.
sonst kannst du si vorgehen.
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de