www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Linearität beweisen
Linearität beweisen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearität beweisen: Idee
Status: (Frage) beantwortet Status 
Datum: 13:58 Di 06.12.2011
Autor: Coup

Aufgabe
Es gilt zu untersuchen ob die Abbildung F linear ist.
F : R3 → R2, (x1, x2, [mm] x3)\mapsto [/mm]  (r1x2x3, x1 − r2r3)
r1=r2=r3=1

Hi, wie gehe ich hier am besten vor ?
Muss ich die Abbildung als Matrix darstellen ?
Ich habe noch keine Idee leider

lg
Michael

        
Bezug
Linearität beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:04 Di 06.12.2011
Autor: kamaleonti

Hallo,
> Es gilt zu untersuchen ob die Abbildung F linear ist.
>  F : R3 → R2, (x1, x2, [mm]x3)\mapsto[/mm]  (r1x2x3, x1 − r2r3)
>  r1=r2=r3=1

Für lineare Abbildung gilt F(0)=0 (die Nullelemente sind aus dem jeweiligem Vektorraum).

Ist das hier der Fall?


LG

Bezug
                
Bezug
Linearität beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:07 Di 06.12.2011
Autor: Coup

Ich denke, dass F(0) = 0 gilt. Oder irre ich Mich ?
Es muss doch auchnoch gelten F(v-w) = F(v) - F(w) ?

Bezug
                        
Bezug
Linearität beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:42 Di 06.12.2011
Autor: barsch

Hallo,

1. musst du dir zuerst klar machen, was zu zeigen ist.

Was muss gelten, damit die Abbildung linear ist? Schreibe dir die Eigenschaften auf!

2. Aus einer eben diesen Eigenschaften folgt dann, dass für eine lineare Abbildung f gilt: [mm]f(0)=0[/mm].

Gilt das hier? Betrachten wir dazu die Aufgabe:


> Es gilt zu untersuchen ob die Abbildung F linear ist.

F : R3 → R2, (x1, x2, [mm] x3)\mapsto [/mm]  (r1x2x3, x1 − r2r3)
r1=r2=r3=1

Schöner sieht es so aus:

[mm]F:\IR^3\to\IR^2,\ \ (x_1,x_2,x_3)\mapsto{(r_1x_2x_3,x_1-r_2r_3)}[/mm] mit [mm]r_1=r_2=r_3=1[/mm].

Dann setze doch zuerst einmal [mm]r_i[/mm] ein:

[mm]F(x_1,x_2,x_3)=(1*x_2*x_3,x_1-1*1)=(x_2*x_3,x_1-1)[/mm]

> Ich denke, dass F(0) = 0 gilt. Oder irre ich Mich ?

Bist du jetzt immer noch der Ansicht, dass [mm]F((0,0,0))=(0,0)[/mm]?

> Es muss doch auchnoch gelten F(v-w) = F(v) - F(w) ?  

Ja, das ist korrekt. Aber, wenn man bereits eine Eigenschaft gefunden hat, die verletzt ist, hat man gezeigt, dass die Abbildung nicht linear ist. Dann ist nichts weiter zu zeigen.

Gruß
barsch


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de