www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Linearität in der ersten ...
Linearität in der ersten ... < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearität in der ersten ...: Induktion
Status: (Frage) beantwortet Status 
Datum: 20:55 Fr 27.01.2012
Autor: BerlinerKindl

Aufgabe
Zeigen Sie die Linearität der ersten Komponente [mm] <\lambda v,w>=\lambda, \lambda\in\IR [/mm]
Mit [mm] =\bruch{1}{4}(||v+w||^2-||v-w||^2). [/mm]

Das ist meine Aufgabe, ich bin schon so weit, dass ich rausbekommen habe, dass ich mit Induktion für [mm] \IN \ge [/mm] 2 anfangen muss, da 0 und 1 einfach sind.
Jetzt habe ich Probleme mit der Induktion und weiß nicht wie ich anfangen soll....

für [mm] \IZ,\IQ [/mm] und [mm] \IR [/mm] habe ich schon Ideen, aber wenn der Anfang fehlt, brauche ich nicht weitermachen.

Das ist dann doch meine Definition vom Skalarprodukt oder ?!
[mm] :=\summe_{i=1}^{n}\bruch{1}{4}(||v_{i}+w_{i}||^2-||v_{i}-w_{i}||^2) [/mm]

IA: Und ab hier wird es Peinlich -.-
[mm] \summe_{i=1}^{n}\bruch{1}{4}(||\lambda v+w||^2-||\lambda v-w||^2)... [/mm]

MfG

        
Bezug
Linearität in der ersten ...: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Fr 27.01.2012
Autor: Fulla

Hallo BerlinerKindl,

> Zeigen Sie die Linearität der ersten Komponente [mm]<\lambda v,w>=\lambda, \lambda\in\IR[/mm]

Aus deinen Ausführungen weiter unten schließe ich, dass [mm]v,w\in\mathbb R^n[/mm] sein sollen. Richtig?

> Mit [mm]=\bruch{1}{4}(||v+w||^2-||v-w||^2).[/mm]
>  Das ist meine Aufgabe, ich bin schon so weit, dass ich
> rausbekommen habe, dass ich mit Induktion für [mm]\IN \ge[/mm] 2
> anfangen muss, da 0 und 1 einfach sind.
> Jetzt habe ich Probleme mit der Induktion und weiß nicht
> wie ich anfangen soll....

Das musst du nicht... Du kannst es auch direkt zeigen.

> für [mm]\IZ,\IQ[/mm] und [mm]\IR[/mm] habe ich schon Ideen, aber wenn der
> Anfang fehlt, brauche ich nicht weitermachen.
>  
> Das ist dann doch meine Definition vom Skalarprodukt oder
> ?!
>  
> [mm]:=\summe_{i=1}^{n}\bruch{1}{4}(||v_{i}+w_{i}||^2-||v_{i}-w_{i}||^2)[/mm]

Nein, für [mm]x\in\mathbb R^n[/mm] ist [mm]\|x\|:=\sqrt{x_1^2+x_2^2+\ldots +x_{n-1}^2+x_n^2}=\sqrt{\sum_{i=1}^n x_i^2}[/mm] und entsprechend [mm]\|x\|^2=\sum_{i=1}^n x_i^2[/mm]

Also, gilt für dein Skalarprodukt:
[mm] \langle v,w\rangle=\frac{1}{4}\left(\sum_{i=1}^n \left(v_i+w_i)^2-(v_i-w_i)^2\right)\right)[/mm]

> IA: Und ab hier wird es Peinlich -.-
> [mm]\summe_{i=1}^{n}\bruch{1}{4}(||\lambda v+w||^2-||\lambda v-w||^2)...[/mm]
>  
> MfG  

Wie gesagt, lass die Induktion mal bleiben...

Rechne zunächst mal [mm]\langle v,w\rangle[/mm] aus (also den obigen Term vereinfachen).
Danach berechnest du [mm]\langle \lambda v,w\rangle[/mm] und vergleichst mit [mm]\langle v,w\rangle[/mm].


Lieben Gruß,
Fulla


Bezug
                
Bezug
Linearität in der ersten ...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:58 Fr 27.01.2012
Autor: BerlinerKindl

Danke :),
ich habe beides ausrechnet und <v,w>=vw und [mm] <\lambda [/mm] v,w>= [mm] \lambda [/mm] vw, wenn er richtig ist....
wie kann ich jetzt darauf schließen, dass [mm] <\lambda v,w>=\lambda [/mm] ist ??

Bezug
                        
Bezug
Linearität in der ersten ...: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Fr 27.01.2012
Autor: Fulla

Hallo nochmal,

> Danke :),
>  ich habe beides ausrechnet und [mm]=vw[/mm] und [mm]<\lambda[/mm] v,w>=
> [mm]\lambda[/mm] vw, wenn er richtig ist....
>  wie kann ich jetzt darauf schließen, dass [mm]<\lambda v,w>=\lambda[/mm]
> ist ??  

das stimmt leider nicht. Zumindest nicht ganz... Aus deinen zwei Zeilen kann ich leider nicht rauslesen, was du gerechnet hast, bzw. was mit [mm]\langle v,w\rangle =vw[/mm] gemeint ist. Als Korrektor würde ich dir keine Punkte geben, als "Helfer" vermute ich mal, dass du mit [mm]vw[/mm] das Standardskalarprodukt meinst. Wenn dem so ist, solltest du das hinschreiben! Oder noch viel besser: schreib deine Rechnung hier rein!

Es ist doch
[mm]\langle v,w\rangle =\frac{1}{4}\left(\sum_{i=1}^n\left((v_i+w_i)^2-(v_i-w_i)^2\right)\right)=\frac{1}{4}\left(\sum_{i=1}^n\left(v_i^2+2v_iw_i+w_i^2-v_i^2+2v_iw_i-w_i^2\right)\right)=\frac{1}{4}\sum_{i=1}^n 4v_iw_i=\sum_{i=1}^n v_iw_i[/mm]

Jetzt berechne analog [mm]\langle \lambda v,w\rangle[/mm] und vergleiche mit [mm]\langle v,w\rangle=\sum_{i=1}^n v_iw_i[/mm].

(Schön wäre ja, wenn [mm]\langle \lambda v,w\rangle=\lambda*\sum_{i=1}^nv_iw_i=\lambda\langle v,w\rangle[/mm] rauskommt - also versuch es auf diese Form zu bringen.)


Lieben Gruß,
Fulla


Bezug
                                
Bezug
Linearität in der ersten ...: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:34 Fr 27.01.2012
Autor: Fulla

Mir kommt da grade noch eine Idee...

In meinem letzten Post steht ja der Beweis, dass das gegebene Skalarprodukt dem Standardskalarprodukt entspricht.
Wenn du schon weißt, dass das Standardskalarprodukt linear in der ersten Komponente ist, bist du hier schon fertig.

Lieben Gruß,
Fulla


Bezug
                                
Bezug
Linearität in der ersten ...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:02 Fr 27.01.2012
Autor: BerlinerKindl

mit <v,w> ist ja bei mir aus der Aufgabenstellung was anderes definiert als das standard Skalarprodukt. Müsste dann, um das zu zeigen, was ich brauche,  nicht auch wieder was mit [mm] \bruch{1}{4}\summe_{i=1}^{n}(||v+w||^2-||v-w||^2) [/mm] rauskommen ??

Die Rechnungen habe ich so wie du. Nur kommt mir irgendwie komisch einfach vor. Wenn es so ist.
LG

Bezug
                                        
Bezug
Linearität in der ersten ...: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Fr 27.01.2012
Autor: Fulla


> mit <v,w> ist ja bei mir aus der Aufgabenstellung was
> anderes definiert als das standard Skalarprodukt. Müsste

Deswegen hab ich an der Stelle ja auch nachgehakt :-)

> dann, um das zu zeigen, was ich brauche,  nicht auch wieder
> was mit [mm]\bruch{1}{4}\summe_{i=1}^{n}(||v+w||^2-||v-w||^2)[/mm]
> rauskommen ??

Mach aus den Betragsstrichen Klammern, oder lass die Summe weg - dann ja.
Wenn du willst kannst du auch Folgendes zeigen:
[mm]\langle \lambda v,w\rangle=\frac{1}{4}\left(\|\lambda v+w\|^2-\|\lambda v-w\|^2\right)=\frac{1}{4}\left(\sum_{i=1}^n(\lambda v_i+w_i)^2-\sum_{i=1}^n(\lambda v_i-w_i)^2\right)=\ldots =\lambda*\frac{1}{4}\left(\sum_{i=1}^n(v_i+w_i)^2-\sum_{i=1}^n(v_i-w_i)^2\right)=\lambda*\langle v,w\rangle[/mm]
<v,w>

> Die Rechnungen habe ich so wie du. Nur kommt mir irgendwie
> komisch einfach vor. Wenn es so ist.
> LG  

Der Einfachheit halber habe ich auch vorgeschlagen, erstmal [mm]\langle v,w\rangle[/mm] auszurechnen und dann damit zu vergleichen.
Anschaulich zeigst du auf diese Weise: Es gilt [mm]\langle v,w\rangle = \text{irgendwas}[/mm] und [mm]\langle\lambda v,w\rangle=\lambda*\text{irgendwas}[/mm]. Daraus folgt dann </v,w></v,w>[mm]\langle\lambda v,w\rangle=\lambda*\text{irgendwas}=\lambda* \langle v,w\rangle[/mm].

Ich finde das anschaulicher/einfacher/übersichtlicher als die lange Rechnung oben mit den "[mm]\ldots[/mm]"


Lieben Gruß,
Fulla

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de