www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - Linearkombination - Matrizen?
Linearkombination - Matrizen? < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearkombination - Matrizen?: verstehe die Frage nicht..
Status: (Frage) beantwortet Status 
Datum: 17:55 Di 08.05.2007
Autor: cooperdrooper

Hallo @ matheforum,
wir machen z.Z. Matrizen, bis jetzt lief auch alles problemlos doch der Lehrer stelle am Freitag eine Frage, die wir zuhause beantworten sollten, doch ich verstehe die Frage überhaupt nicht.

Wir haben uns mit drei dreier Matrizen (so sagt man das doch oder?, wenn man drei Spalten mit 3 Zahlen oder variablen meint..) und dann hat er an die Tafel folgende Frage gestellt:

"Dass man Vektor c als Linearkombination von a und b ausdrücken kann?"


Was hat eine Linearkombination mit einer Matrix zutun?


Freue mich auf jede Hilfe..

Mfg

cooper  






Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Linearkombination - Matrizen?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Di 08.05.2007
Autor: angela.h.b.


> doch der Lehrer stelle am Freitag eine Frage,
> die wir zuhause beantworten sollten, doch ich verstehe die
> Frage überhaupt nicht.
>  
> "Dass man Vektor c als Linearkombination von a und b
> ausdrücken kann?"

Hallo,

[willkommenmr].

Diese Frage ist wahrlich unverständlich. Wesentliche Satzteile fehlen.

Wahrscheinlich meinte er:" Wie kann man an einer Matrix sehen, daß man man Vektor c als Linearkombination von a und b ausdrücken kann?"


Die Antwort auf diese Frage ist schwierig - nicht, weil sie so kompliziert ist, sondern weil ich gar nicht weiß, was Ihr bisher mit Matrizen getan habt.

Ich vermute, daß Ihr Gleichungen gelöst habt.

Die Frage, ob es  [mm] \lambda, \mu [/mm] gibt, so daß
[mm] c=\lambda*a [/mm] + [mm] \mu*b [/mm] ist, also eine Linearkombination von a und b,
ist die Frage nach der Lösbarkeit des Gleichungssystems
welches ausgeschrieben ja aus drei Gleichungen besteht.

Gruß v. Angela






Bezug
                
Bezug
Linearkombination - Matrizen?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 Di 08.05.2007
Autor: cooperdrooper

Hallo,
danke für die schnelle Hilfe. In der Tat haben wir bis jetzt nur Gleichungen gelöst..

Ich glaube, der Lehrer wollte das zu dieser Gleichung wissen:

[mm] \pmat{ 1 & 3 & 2 \\ 3 & -2 & -5 \\ 4 & 1 & -3 } [/mm]

[mm] \begin{pmatrix} 1 & 3 & 2 \\ 3 & -2 & -5 \\ 4 & 1 & -3 \end{pmatrix} [/mm]

Bezug
                        
Bezug
Linearkombination - Matrizen?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 Di 08.05.2007
Autor: barsch

Hi,

naja, ich kann mir zweierlei Möglichkeiten vorstellen.

Will der Lehrer wissen, ob die Spaltenvektoren linear abhängig sind, kannst

du das so lösen:

[mm] \pmat{ 1 & 3 & 2 \\ 3 & -2 & -5 \\ 4 & 1 & -3 } [/mm]

Deine Spaltenvektoren lauten:

[mm] a=\vektor{1 \\ 3\\ 4} [/mm]

[mm] b=\vektor{3 \\ -2\\ 1} [/mm]

[mm] c=\vektor{2 \\ -5\\ -3} [/mm]

[mm] b+(-1)\*a=c [/mm]

[mm] \vektor{3 \\ -2\\ 1}+(-1)\*\vektor{1 \\ 3\\ 4}=\vektor{2 \\ -5\\ -3} [/mm]

c ist also linear abhängig.

Die 2. Möglichkeit ist, nach den Zeilenvektoren zu sehen. Das kann man, wie in der 1. Möglichkeit auch, mit Gauß machen.

Die Zeilenvektoren lauten:

[mm] d=\vektor{1 \\ 3\\ 2} [/mm]

[mm] e=\vektor{3 \\ -2\\ -5} [/mm]

[mm] f=\vektor{4 \\ 1\\ -3} [/mm]

d+e=f

[mm] \vektor{1 \\ 3\\ 2}+\vektor{3 \\ -2\\ -5}=\vektor{4 \\ 1\\ -3} [/mm]

f ist also linear abhängig.

MfG

barsch



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de