www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Linerare Hülle + EZS in R3
Linerare Hülle + EZS in R3 < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linerare Hülle + EZS in R3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:30 Do 10.11.2005
Autor: sonnenblumale

Hallo!

Meine Aufgabe ist es die Standardbasis von [mm] \IR^3 [/mm] mit als Linearkombination von ((0,1,-1),(1,1,0),(0,0,2)) darzustellen, dh, ich muss durch Addition der Vektoren (bzw. der Vielfachen der Vektoren) auf ((1,0,0),(0,1,0),(0,0,1)) kommen.

Wie komme ich in diesem Fall auf die ganzen 1en, da wenn ich ein Vielfaches einer der Linearkombinationen ((0,1,-1),(1,1,0),(0,0,2)) nehme, so bin ich doch bereits über 1 und komme durch Addition nicht mehr herunter. Oder kann ich subtrahieren auch?

Danke & greetz
sonnenblumale


        
Bezug
Linerare Hülle + EZS in R3: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Do 10.11.2005
Autor: BennoO.

Hi Sonnenblumale.
Ja, das könnte man so denken, wenn man sich das so anguckt, gel?! ;-)
Natürlich ist es möglich die Einheitsvektoren des [mm] R^3 [/mm] durch eine Linearkombination, der von dir angegebenen Vektoren, anzugeben. Bilde doch einfach mal eine Linearkombination der Vekrotren mit rellen Koeffizienten r,s,t, und setz diese dann gleich den Einheitsvektoren.
Ich geb dir mal ein Beispiel füs den ersten Einheitsvektor:
[mm] r*\vektor{0 \\ 0 \\ -1}+s* \vektor{1 \\ 1 \\ 0}+t* \vektor{0 \\ 0 \\ 2}= \vektor{1 \\ 0 \\ 0} [/mm]
Daraus erhälst du ein LGS mit drei Unbekannten und drei Gleichungen, also ist es eindeutig lösbar.
I)r*0+s*1+t*0=1 -->      s=1
II)1*r+1*s=0--->r+1=0-->      r=-1
III)-r+2t=0-->1+2t=0-->2t=-1-->     t=-0,5
Wenn du nun r,s,t in deine Linearkombination oben einsetzt, kommt der erste Einheitsvektor des [mm] R^3 [/mm] raus.
Viele Grüße Benno


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de