Linksinvarianz bei Haarmaß < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 09:46 Di 07.12.2010 | Autor: | wee |
Aufgabe | Es seien [mm] \mathcal{B}(\mathcal{H}) [/mm] die beschränkten Operatoren auf einen endlichen Hilbertraum [mm] \mathcal{H}, A:\mathcal{B}(\mathcal{H}\rightarrow\mathcal{B}(\mathcal{H}) [/mm] ein selbstadjungierter Operator, d.h. [mm] A(a^\ast)=A(a)^\ast. [/mm] Weiter bezeichne [mm] \mathcal{U} [/mm] die Menge der unitären Elemente von [mm] \mathcal{B}(\mathcal{H}) [/mm] und [mm] \mu [/mm] das Haarmaß auf [mm] \mathcal{U}. [/mm]
Zeige: Für ein Element [mm] v\in\mathcal{U} [/mm] gilt [mm] \mathbb{E}_\mu(A(vu^\ast)u)=\mathbb{E}_\mu(A(u^\ast)uv). \mathbb{E}_\mu [/mm] bezeichnet den Erwartungswert bzgl. des Haarmaßes [mm] \mu. [/mm] |
Hallo,
ich denke, um die Gleichung zu zeigen muss man benutzen, dass v und u unitär sind und das Haarmaß auf [mm] \mathcal{U} [/mm] unimodular (links- und rechtsinvariant) ist, denn [mm] \mathcal{U} [/mm] ist kompakt.
Mein Idee ist also, die Variablentransformation [mm] u\mapsto [/mm] uv zu betrachten. Dann ist wegen der Rechtsinvarianz [mm] \mathbb{E}_\mu(A(vu^\ast)u)=\mathbb{E}_\mu(A(v(uv)^\ast)uv=\mathbb{E}_\mu(A(vv^\ast u^\ast)uv)=\mathbb{E}_\mu(A(u^\ast)uv).
[/mm]
Vielleicht kann hier jemand meine Lösung kurz prüfen. Da ich mich mit dem Haarmaß nämlich nicht gut auskenne, bin ich noch ein bisschen unsicher. Vielen Dank im voraus!
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:27 Do 09.12.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|