www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Lipschitz-Stetigkeit
Lipschitz-Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lipschitz-Stetigkeit: Wurzelfunktion
Status: (Frage) beantwortet Status 
Datum: 12:59 Fr 10.12.2010
Autor: BarneyS

Aufgabe
Zeigen Sie [mm]f(x) = \wurzel{x}[/mm] ist Lipschitz-Setig auf [mm][2,\infty)[/mm] aber nicht Lipschitz-Stetig in [mm]x_0 = 0[/mm]

Hallo,

ok, hier mein Versuch:

[mm]|f(x)-f(y)|\le L|x-y|[/mm]

[mm]\gdw | \wurzel{x} - \wurzel{y}| \le L |x-y|[/mm]

für [mm]y=2[/mm] und [mm]x \in (2;infty)[/mm] :

[mm]\wurzel{x}-\wurzel{2} \le L(x-2)[/mm]

[mm]\gdw \bruch{\wurzel{x}-\wurzel{2}}{x-2} \le L[/mm]

Da wir hier eine reelle Lösung für L haben, und für [mm]x\rightarrow\infty[/mm] die linke Seite der Gleichung gegen 0 geht, und da die Rechnung für ein beliebiges [mm]y \in [2,\infty) [/mm] gilt, haben wir Lipschitz-Stetigkeit gezeigt.

Aber was passiert wenn x gegen 2 geht?

Lipschitz-Stetigkeit in [mm]x_0=0[/mm]:

[mm] y=0 [/mm] und [mm]x \in (0,a] [/mm] mit [mm]a \in \IR >0[/mm]

[mm]|\wurzel{x} - 0| \le L|x-0|[/mm]

[mm]\gdw \wurzel{x} \le Lx[/mm]

[mm]\gdw L\ge \bruch{1}{\wurzel{x}}[/mm]

Keine reelle Lösung für L, da für [mm]x \rightarrow 0[/mm] die rechte Seite unendlich groß wird. Also ist f(x) in x = 0 nicht Lipschitz-Stetig.

        
Bezug
Lipschitz-Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 Fr 10.12.2010
Autor: leduart

Hallo

> Zeigen Sie [mm]f(x) = \wurzel{x}[/mm] ist Lipschitz-Setig auf
> [mm][2,\infty)[/mm] aber nicht Lipschitz-Stetig in [mm]x_0 = 0[/mm]
>  Hallo,
>  
> ok, hier mein Versuch:
>  
> [mm]|f(x)-f(y)|\le L|x-y|[/mm]
>  
>  
> für [mm]y=2[/mm] und [mm]x \in (2;infty)[/mm] :

warum hier y=2?

> [mm]\wurzel{x}-\wurzel{2} \le L(x-2)[/mm]
>  
> [mm]\gdw \bruch{\wurzel{x}-\wurzel{2}}{x-2} \le L[/mm]
>  
> Da wir hier eine reelle Lösung für L haben, und für
> [mm]x\rightarrow\infty[/mm] die linke Seite der Gleichung gegen 0
> geht, und da die Rechnung für ein beliebiges [mm]y \in [2,\infty)[/mm]
> gilt, haben wir Lipschitz-Stetigkeit gezeigt.

nein, denn das gilt doch nicht für beliebiges x,y
du musst ein L angeben!

> Aber was passiert wenn x gegen 2 geht?

genau das, sollst du ja allgemein für y gegen x zeigen!
Tip erweitern mit $ [mm] \wurzel{x} +\wurzel{y}$ [/mm] oder (x-y)=$ [mm] \wurzel{x} +\wurzel{y}$ [/mm]
oder (x-y)=$ [mm] (\wurzel{x} +\wurzel{y})*( \wurzel{x} -\wurzel{y})$ [/mm]

> Lipschitz-Stetigkeit in [mm]x_0=0[/mm]:
>  
> [mm]y=0[/mm] und [mm]x \in (0,a][/mm] mit [mm]a \in \IR >0[/mm]
>  
> [mm]|\wurzel{x} - 0| \le L|x-0|[/mm]
>  
> [mm]\gdw \wurzel{x} \le Lx[/mm]
>  
> [mm]\gdw L\ge \bruch{1}{\wurzel{x}}[/mm]
>  
> Keine reelle Lösung für L, da für [mm]x \rightarrow 0[/mm] die
> rechte Seite unendlich groß wird. Also ist f(x) in x = 0
> nicht Lipschitz-Stetig.

Der Teil ist richtig
gruss leduart


Bezug
                
Bezug
Lipschitz-Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:33 Fr 10.12.2010
Autor: BarneyS

ich glaube ich hab's kappiert.

[mm]|\wurzel{x}- \wurzel{y}| \le L |x-y|[/mm]

[mm]x>y[/mm] o.B.d.A.

[mm]\Rightarrow \wurzel{x}-\wurzel{y} \le L(x-y)[/mm]

[mm]\gdw \wurzel{x}-\wurzel{y} \le L(\wurzel{x}-\wurzel{y})(\wurzel{x}+\wurzel{y})[/mm]

[mm]\gdw L \ge \bruch{1}{\wurzel{x}+\wurzel{y}}[/mm]

da [mm]min(x,y) = 2[/mm]

[mm]L=\bruch{1}{2\wurzel{2}}[/mm]


Bezug
                        
Bezug
Lipschitz-Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Fr 10.12.2010
Autor: fred97

Du hast es kapiert, bis auf:

                 $ [mm] \wurzel[]{4}\ne 2*\wurzel{2}$ [/mm]

FRED

Bezug
                                
Bezug
Lipschitz-Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:38 Fr 10.12.2010
Autor: BarneyS

ja, hatte ich schon geändert, bevor du geantwortet hast...^^

thx

Bezug
        
Bezug
Lipschitz-Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:19 Fr 10.12.2010
Autor: fred97


> Zeigen Sie [mm]f(x) = \wurzel{x}[/mm] ist Lipschitz-Setig auf
> [mm][2,\infty)[/mm] aber nicht Lipschitz-Stetig in [mm]x_0 = 0[/mm]

             " Lipschitz-Stetig in [mm]x_0 = 0[/mm]"

ist doch völlig unsinnig !

Es soll wahrscheinlich lauten: " .....nicht Lipschitz-Stetig auf [0, [mm] \infty) [/mm]

FRED




>  Hallo,
>  
> ok, hier mein Versuch:
>  
> [mm]|f(x)-f(y)|\le L|x-y|[/mm]
>  
> [mm]\gdw | \wurzel{x} - \wurzel{y}| \le L |x-y|[/mm]
>  
> für [mm]y=2[/mm] und [mm]x \in (2;infty)[/mm] :
>  
> [mm]\wurzel{x}-\wurzel{2} \le L(x-2)[/mm]
>  
> [mm]\gdw \bruch{\wurzel{x}-\wurzel{2}}{x-2} \le L[/mm]
>  
> Da wir hier eine reelle Lösung für L haben, und für
> [mm]x\rightarrow\infty[/mm] die linke Seite der Gleichung gegen 0
> geht, und da die Rechnung für ein beliebiges [mm]y \in [2,\infty)[/mm]
> gilt, haben wir Lipschitz-Stetigkeit gezeigt.
>  
> Aber was passiert wenn x gegen 2 geht?
>  
> Lipschitz-Stetigkeit in [mm]x_0=0[/mm]:
>  
> [mm]y=0[/mm] und [mm]x \in (0,a][/mm] mit [mm]a \in \IR >0[/mm]
>  
> [mm]|\wurzel{x} - 0| \le L|x-0|[/mm]
>  
> [mm]\gdw \wurzel{x} \le Lx[/mm]
>  
> [mm]\gdw L\ge \bruch{1}{\wurzel{x}}[/mm]
>  
> Keine reelle Lösung für L, da für [mm]x \rightarrow 0[/mm] die
> rechte Seite unendlich groß wird. Also ist f(x) in x = 0
> nicht Lipschitz-Stetig.


Bezug
                
Bezug
Lipschitz-Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:25 Fr 10.12.2010
Autor: BarneyS


>  
> " Lipschitz-Stetig in [mm]x_0 = 0[/mm]"
>
> ist doch völlig unsinnig !
>  
> Es soll wahrscheinlich lauten: " .....nicht
> Lipschitz-Stetig auf [0, [mm]\infty)[/mm]
>  
> FRED

Hab ich mir auch gedacht^^

Lipschitz-Stetigkeit kann man ja nur in einem Intervall zeigen und nicht in einem Punkt.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de