www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Lipschitz
Lipschitz < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lipschitz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:34 Mo 26.10.2009
Autor: Roli772

Aufgabe
f: [mm] \IR [/mm] --> [mm] \IR [/mm] , f(a) = 3a+2
Ist f lip.stetig auf [mm] \IR [/mm] bzw. ist f glm. stetig auf [mm] \IR? [/mm]

Hi an alle!

Komme hier leider weiter.

Seien [mm] a_{1}, a_{2} \in \IR [/mm] : | [mm] f(a_{1}) [/mm] - [mm] f(a_{2}) [/mm] = | [mm] (3a_{1}+2)-(3a_{2}+2)) [/mm]
aber hier stehe ich an, muss ja zeigen dass der Abstand [mm] d_{2} [/mm] nicht kleinergleich c * [mm] d_{1} [/mm] ist, oder?
Für gleichmäßige Stetigkeit habe ich dann leider auch keinen richtigen Ansatz.
Die gleiche "Übung" müssen wir übrigens für [mm] \wurzel{a} [/mm] auf dem interval [0,1] auch machen.

Vielleicht könnte mir hier jemand weiterhelfen? Würde mich sehr freuen!

Danke für eure Zeit,
lg Sr


        
Bezug
Lipschitz: Antwort
Status: (Antwort) fertig Status 
Datum: 09:46 Mo 26.10.2009
Autor: pelzig


> Seien [mm]a_{1}, a_{2} \in \IR[/mm] : | [mm]f(a_{1})[/mm] - [mm]f(a_{2})[/mm] = |
> [mm](3a_{1}+2)-(3a_{2}+2))[/mm]

Jetzt fasse das noch zusammen zu [mm] $3|a_1-a_2|$ [/mm]

>  Für gleichmäßige Stetigkeit habe ich dann leider auch
> keinen richtigen Ansatz.

Zeige, dass jede Lipschitzstetige Funktion auch gleichmäßig stetig ist.

>  Die gleiche "Übung" müssen wir übrigens für [mm]\wurzel{a}[/mm]
> auf dem interval [0,1] auch machen.

Die ist nicht Lipschitzstetig (aber glm. stetig). Nur so als Tip: Schau dir den Punkt 0 an!

Gruß, Robert

Bezug
                
Bezug
Lipschitz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:59 Mo 26.10.2009
Autor: Roli772

Ah, danke =)
Glaube, da muss ich wohl nächstes mal genauer hinschauen *g*
Hab nachgesehen, wir hatten ohnehin schon einen Satz, der besagt, dass jede lip.stetige Fkt auch auch glm. stetig ist. Damit wäre das auch gelöst.

Ok, der Tipp ist gut. Denn [mm] \wurzel{a} [/mm] wird in der Nähe von 0 beliebig steil.
Aber wie schreib ich das jetzt hin?

[mm] \forall [/mm] c [mm] \exists a_{1},a_{2} [/mm] mit [mm] d_{2}(\wurzel{a_{1}},\wurzel{a_{2}}) [/mm] > c * [mm] d_{1}(a_{1},a_{2}), [/mm] und dann?
Kann ich da x gleichmal als 0 wählen?

Bezug
                        
Bezug
Lipschitz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:16 Mo 26.10.2009
Autor: fred97

Sei $f(x) = [mm] \wurzel{x}$ [/mm]

1. f ist auf [0,1] stetig und [0,1] ist kompakt, also ist f auf [0,1] glm. stetig

2. f ist auf [0,1] nicht Lipschitzstetig  !  Dazu nimm an f sei auf diesem Intervall doch L . - stetig, es gibt also ein L [mm] \ge [/mm] 0 mit

      [mm] $|\wurzel{x}-\wurzel{y}| \le|x-y|$ [/mm]  für alle x,y [mm] \in [/mm] [0,1]

So,  nun setze mal oben y = 0 und versuche zu einem Widerspruch zu kommwn.

FRED

Bezug
                                
Bezug
Lipschitz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:25 Mo 26.10.2009
Autor: Roli772

Ok, dann probier ich das mal: also
Sei y=0 [mm] \Rightarrow \forall x\in(0,1] [/mm] : [mm] \wurzel{x} \le [/mm] L * x
[mm] \gdw \wurzel{x} \le [/mm] L [mm] \gdw \wurzel{x} \ge [/mm] L
Hm.. habe aber noch immer keinen rechten Widerspruch, oder doch?
Mfg Sr.

Bezug
                                        
Bezug
Lipschitz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:26 Mo 26.10.2009
Autor: Roli772

Ubs, habe mich verschrieben, es muss natürlich zum schluss heißen
[mm] \wurzel{x} \re [/mm] (1/L)

Bezug
                                        
Bezug
Lipschitz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:33 Mo 26.10.2009
Autor: pelzig

Wenn es ein $L>0$ gibt sodass für alle [mm] $x\in(0,1]$ [/mm] gilt [mm] $\sqrt{x}\le [/mm] Lx$, dann [mm] $1/\sqrt{x}\le [/mm] L$ für alle [mm] $x\in(0,1]$. [/mm] Das kann aber nicht sein, denn z.B. für [mm] $x_n=1/n^2$ [/mm] gilt [mm] $\lim_{n\to\infty}1/\sqrt{x_n}=\infty$ [/mm] (siehe deine andere Frage...).

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de