www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ln Gleichung aufstellen
Ln Gleichung aufstellen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ln Gleichung aufstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:26 Mi 18.09.2013
Autor: mary1004

Aufgabe
f(x)= [mm] ln(ax^2+bx+c); [/mm] Gf hat eine waagerechte Tangente in P(1/ln5,5), und schneidet die x-Achse bei -2.
a) Bestimme die Koeffizienten a, b und c!

Hallo an Alle! :)
Ich habe angefangen, diese Aufgabe im Unterricht zu lösen, und die Ergebnisse sind zur Überprüfung gegeben worden. c= 5, b=1, a=0,5
Ich denke, dass meine Ansätze gut sind außer einer Bedingung, an der ich nicht 5 für c herausfinde. Ich glaube, dass ich wegen der Umformung nicht weiterkomme.

1) f'(1)= ln(a(1)²+b*1+c)=ln(5,5)
a+b+c=5,5
c= 5,5 -a-b

2) f(-2)= ln(a(-2)²+b*(-2)+c)=0
ln(4a-2b+c)=ln(1)
4a -2b +c = 1
c= -4a +2b +1

3) f'(x)= [mm] \bruch{2ax+b}{2ax^2+bx+c} [/mm]
[mm] f'(1)=\bruch{2a+b}{2a+b+c}=0 [/mm]
[mm] f'(1)=a+1+\bruch{2a+b}{c}=0 [/mm]
Und da komme ich nach mehreren Versuchen nicht mehr weiter...

Gleichungssystem:
1) 4a-2b+c=1
2) a + b + c= 5,5

1)-2) [mm] 3a-3b=\bruch{-9}{2} [/mm]
[mm] -3b=\bruch{-9}{2} [/mm] -3a
b= [mm] \bruch{3}{2} [/mm] +a

Wenn jemand mir den weiteren Schritt angeben könnte, wäre es sehr nett :)
Verzeihung wenn es Sprachfehler geben, aber ich lerne Deutsch als Fremdsprache und mein Matheunterricht wird teilweise auf Deutsch erteilt.

        
Bezug
Ln Gleichung aufstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Mi 18.09.2013
Autor: M.Rex

Hallo.

> f(x)= [mm]ln(ax^2+bx+c);[/mm] Gf hat eine waagerechte Tangente in
> P(1/ln5,5), und schneidet die x-Achse bei -2.
> a) Bestimme die Koeffizienten a, b und c!
> Hallo an Alle! :)
> Ich habe angefangen, diese Aufgabe im Unterricht zu
> lösen, und die Ergebnisse sind zur Überprüfung gegeben
> worden. c= 5, b=1, a=0,5
> Ich denke, dass meine Ansätze gut sind außer einer
> Bedingung, an der ich nicht 5 für c herausfinde. Ich
> glaube, dass ich wegen der Umformung nicht weiterkomme.



>

> 1) f'(1)= ln(a(1)²+b*1+c)=ln(5,5)
> a+b+c=5,5
> c= 5,5 -a-b

Das hast du falsch notiert, es gilt:
[mm] \ln(a\cdot1^{2}+b\cdot1+c)=\ln(5,5) [/mm]
Vergleichst du die Argumente im ln, bekommst du.
$a+b+c=5,5$

>

> 2) f(-2)= ln(a(-2)²+b*(-2)+c)=0
> ln(4a-2b+c)=ln(1)
> 4a -2b +c = 1
> c= -4a +2b +1

Hier ist auch ein "Dreher" drin
f(-2)=0 führt zu
[mm] \ln(a\cdot2^{2}+b\cdot2+c)=0 [/mm]
Beidseitig den Logarithmus Auflösen ergibt
$4a+2b+c=1$


>

> 3) f'(x)= [mm]\bruch{2ax+b}{2ax^2+bx+c}[/mm]
> [mm]f'(1)=\bruch{2a+b}{2a+b+c}=0[/mm]
> [mm]f'(1)=a+1+\bruch{2a+b}{c}=0[/mm]
> Und da komme ich nach mehreren Versuchen nicht mehr
> weiter...

Hier denkst du zu umständlich. Ein Bruch ist genau dann Null, wenn der Zähler Null ist, und der Nenner nicht. Hier muss also gelten, da f'(1)=0:
[mm] \frac{2a\cdot1+b}{a\cdot1^{2}+b\dot1+c}=0 [/mm]
[mm] \Leftrightarrow\frac{2a+b}{a+b+c}=0 [/mm]
[mm] \Leftrightarrow2a+b=0 [/mm]


>

> Gleichungssystem:
> 1) 4a-2b+c=1
> 2) a + b + c= 5,5

>

> 1)-2) [mm]3a-3b=\bruch{-9}{2}[/mm]
> [mm]-3b=\bruch{-9}{2}[/mm] -3a
> b= [mm]\bruch{3}{2}[/mm] +a

>

> Wenn jemand mir den weiteren Schritt angeben könnte, wäre
> es sehr nett :)

Du bekommst also nun folgendes Lineare Gleichungssystem:
[mm] \begin{vmatrix}a+b+c=5,5\\4a+2b+c=1\\2a+b=0\end{vmatrix} [/mm]

Marius

Bezug
                
Bezug
Ln Gleichung aufstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:49 Mi 18.09.2013
Autor: mary1004

Vielen Dank, mir den weiteren Schritt gegeben zu haben. Ich hatte nämlich zu umständlich gedacht!
In f(-2) hast du aber 2 anstatt -2 eingesetzt...
Das Wichtigste aber ist die Gesamtmethode, die ich mir noch nicht angeeignet hatte, und die ich dank dir besser verstehe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de