www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Lösbarkeitsbedingung
Lösbarkeitsbedingung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösbarkeitsbedingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:16 Di 26.04.2011
Autor: moody

(I) a < b [mm] \gdw [/mm] a + c < b + c
(II) a < a + b
(III) a + c = b + c [mm] \gdw [/mm] a = b

a + x = b besitzt höchstens eine Lösung x.


Hallo,

ich hoffe ihr könnt mir hier weiterhelfen.

Ich weiß nicht wie ich das mit den Regeln beweisen soll, also ich hätte jetzt gesagt ich weise nach das x = b -a eine Lösung ist und dann zeige ich das das eindeutig ist. Das habe ich schon gemacht aber ich benutze dafür nur Assoziativgesetz und Kommutativ gesetz und addiere u.a. -a dazu.
Ich bin dabei nun unsicher weil ich dafür keine der Regeln aus I - III brauche und mir auch unsicher bin ob ich einfach -a addieren darf z.B.
Da wird es ja sicher auch eine Alternative über meine 3 Aussagen geben.

lg moody

        
Bezug
Lösbarkeitsbedingung: Grundmenge ?
Status: (Antwort) fertig Status 
Datum: 06:57 Di 26.04.2011
Autor: Al-Chwarizmi


> (I) a < b [mm]\gdw[/mm] a + c < b + c
>  (II) a < a + b
>  (III) a + c = b + c [mm]\gdw[/mm] a = b
>  
> a + x = b besitzt höchstens eine Lösung x.
>  
>
> Hallo,
>  
> ich hoffe ihr könnt mir hier weiterhelfen.
>
> Ich weiß nicht wie ich das mit den Regeln beweisen soll,
> also ich hätte jetzt gesagt ich weise nach das x = b -a
> eine Lösung ist und dann zeige ich das das eindeutig ist.
> Das habe ich schon gemacht aber ich benutze dafür nur
> Assoziativgesetz und Kommutativ gesetz und addiere u.a. -a
> dazu.
> Ich bin dabei nun unsicher weil ich dafür keine der Regeln
> aus I - III brauche und mir auch unsicher bin ob ich
> einfach -a addieren darf z.B.
>  Da wird es ja sicher auch eine Alternative über meine 3
> Aussagen geben.
>  
> lg moody


Hallo moody,

es scheint mir nicht ganz klar, was die Aufgabe ist.
In welcher Grundmenge spielt sich das Ganze ab ?
(die Regel (II) weckt bei mir zwar eine Vermutung dazu)

Um zu zeigen, dass die Gleichung a+x=b höchstens
eine Lösung haben kann, bietet sich ein Widerspruchs-
beweis an: Nimm an, du hättest Werte [mm] a,b,x_1,x_2 [/mm] (alle
aus der Grundmenge) mit  [mm] x_1\not=x_2 [/mm]  und versuche
dann mittels der verfügbaren Regeln, aus dieser Annahme
einen Widerspruch herzuleiten.

Zu deinem Ansatz: beachte, dass du gar nicht zeigen
musst, dass es überhaupt immer (für alle a und b)
eine Lösung gibt !

LG    Al-Chw.



Bezug
                
Bezug
Lösbarkeitsbedingung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:23 Mi 27.04.2011
Autor: moody

Vielen Dank für die Antwort!

Habe einfach angenommen es gäbe 2 Lösungen und das führte dann zu einem Widerspruch bzw. das ergab dass [mm] x_1 [/mm] = [mm] x_2 [/mm]

lg moody

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de