www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Lösen eines Wegintegrals
Lösen eines Wegintegrals < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen eines Wegintegrals: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:59 Sa 11.11.2006
Autor: willy

Aufgabe
Sei [mm]\gamma:[0,2 \Pi]:->\IC[/mm], [mm] t -> 3e^{it}[/mm]. Bestimme das Integral: [mm]\int_{\gamma}{} \bruch{cos(\Pi z)}{z^2-1},dz[/mm]

Ich dachte mir dass man das über [mm]\int_{\gamma}{} f(z),dz = \int_{a}^{b}f(\gamma(t))*\gamma(t)', dt[/mm] lösen kann, nur kommt ich dann auf einen Term wo es für mich nicht weitergeht:
[mm][mm] \int_{0}^{2*\pi}\frac{\cos(\pi*3*e^{it})}{(3*e^{it})^2-1}*3*e^{it}*\ln(e), [/mm] dt

Irgendwie komme ich also mit dem Wegintegral nicht ganz zurecht. Kann wer helfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Besten Dank & viele Grüße
David

        
Bezug
Lösen eines Wegintegrals: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:22 So 12.11.2006
Autor: willy

Aufgabe
Sei für [mm]c \in \IC[/mm] und r > 0 der Weg [mm]\gamma = \gamma_{c,r}[/mm]  [mm][0,2\pi] \rightarrow \IC[/mm]  [mm]t \rightarrow re^{it} + c[/mm].
Bestimme die folgenden Integrale und begründe das Ergebnis.

[mm]\int_{\gamma_{0,3}}{} \bruch{\cos \Pi z}{z^2-1} dz[/mm], [mm]\int_{\gamma_{0,r}}{} \bruch{\sin(z)}{z-b} dz (b \in \IC, \left| b \right| \not= r)[/mm], [mm] \bruch{1}{2 \pi i} \int_{\gamma_{-i,1}}{} \bruch{e^z}{z^2+1} [/mm] dz

Ich habe noch einmal die komplette Aufgabe abgeschrieben, es sind also 3 Integrale, mir fehlt leider jeglicher Plan was ich hier machen soll. Mir kam auch schon der Gedanke, dass sie vielleicht gar nicht existieren - nur weiss ich auch nicht wie ich das zeigen kann.

Großes Hilfe! Is there anybody out there?

Bezug
                
Bezug
Lösen eines Wegintegrals: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:36 So 12.11.2006
Autor: bluejayes

Ich bin auch gerade am Herumrechnen an ähnlichen Wegintegrelbeispielen.
Ich würde es mit der Cauchyschen Integralformel probieren. Hat bei meinen Beispielen funktioniert.
In deinem Fall f(z)= sin(z), cosz und [mm] e^z. [/mm]

Ich hoff das hilft weiter.

Bezug
                
Bezug
Lösen eines Wegintegrals: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 Di 14.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de