www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Lösen eines einfachen LGS
Lösen eines einfachen LGS < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen eines einfachen LGS: Gleichungen dividieren?
Status: (Frage) beantwortet Status 
Datum: 10:28 Mo 12.05.2014
Autor: Olli1968

Aufgabe
Löse das folgende LGS für die unbekannten [mm]x'_{1} [/mm] und [mm]x'_{2} [/mm].
I: [mm]\alpha*(x_{1}-x'_{1})=\beta*(x'_{2}-x_{2}) [/mm]
II: [mm]\alpha*(x_{1}^{2}-x'_{1}^{2})=\beta(x'_{2}^{2}-x_{2}^{2} ) [/mm].


Hallo liebe Mathematik-Freunde,
während der Nachhilfestunde kam folgende Diskussion auf und ich würde gerne auch eure Meinungung dazu hören.

Ich habe dieses LGS so gelöst, dass ich die Gleichung I nach [mm] x'_{2}[/mm] umgestellt und in Gleichung II eingesetzt habe.

Bekam dann die Lösungen für [mm]x'_{1}=\bruch{\alpha}{2\beta}\pm\wurzel{(\bruch{\alpha}{2\beta})^{2}+x_{1}^{2}-\bruch{\alpha}{\beta}x_{1}-2x_{2} }[/mm]. ( analog für [mm]x'_{2} [/mm] ) heraus.

Jetzt sagte mir mein Nachhilfeschüler, dass, wenn man Gleichung II durch Gleichung I dividiert, folgende Gleichungen erhält:
I: [mm]\alpha*(x_{1}-x'_{1})=\beta*(x'_{2}-x_{2}) [/mm]
IIa: [mm] x_{1}+x'_{1}=x'_{2}+x_{2}[/mm]

und somit [mm]x'_{1}=\bruch{\alpha*x_{1}+\beta*(2x_{2}-x_{1})}{\alpha+\beta}[/mm] (analog für [mm]x_{2}[/mm]).

Aber kann man denn so einfach Gleichungen dividieren? Ich dachte immer, dass man beim LGS nur äquivalentsumformungen benutzen dürfte?

Würde mich sehr über antworten freuen
MfG
Olli

        
Bezug
Lösen eines einfachen LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 10:40 Mo 12.05.2014
Autor: MaslanyFanclub

Hallo,

> Löse das folgende LGS für die unbekannten [mm]x'_{1}[/mm] und
> [mm]x'_{2} [/mm].
>   I: [mm]\alpha*(x_{1}-x'_{1})=\beta*(x'_{2}-x_{2})[/mm]
>  II:
> [mm]\alpha*(x_{1}^{2}-x'_{1}^{2})=\beta(x'_{2}^{2}-x_{2}^{2} ) [/mm].

Ich sehe hier kein Lineares GleichungsSystem.

> Hallo liebe Mathematik-Freunde,
> während der Nachhilfestunde kam folgende Diskussion auf
> und ich würde gerne auch eure Meinungung dazu hören.
>  
> Ich habe dieses LGS so gelöst, dass ich die Gleichung I
> nach [mm]x'_{2}[/mm] umgestellt und in Gleichung II eingesetzt
> habe.
>  
> Bekam dann die Lösungen für
> [mm]x'_{1}=\bruch{\alpha}{2\beta}\pm\wurzel{(\bruch{\alpha}{2\beta})^{2}+x_{1}^{2}-\bruch{\alpha}{\beta}x_{1}-2x_{2} }[/mm].
> ( analog für [mm]x'_{2}[/mm] ) heraus.
>  
> Jetzt sagte mir mein Nachhilfeschüler, dass, wenn man
> Gleichung II durch Gleichung I dividiert, folgende
> Gleichungen erhält:
>  I: [mm]\alpha*(x_{1}-x'_{1})=\beta*(x'_{2}-x_{2})[/mm]
>  IIa: [mm]x_{1}+x'_{1}=x'_{2}+x_{2}[/mm]
>  
> und somit
> [mm]x'_{1}=\bruch{\alpha*x_{1}+\beta*(2x_{2}-x_{1})}{\apha+\beta}[/mm]
> (analog für [mm]x_{2}[/mm]).
>  
> Aber kann man denn so einfach Gleichungen dividieren? Ich
> dachte immer, dass man beim LGS nur äquivalentsumformungen
> benutzen dürfte?

Bei Gleichungen egal welcher Art dürfen nur Äquivalenzumformungen benutzt werden.
Gleichungen dividieren macht auch überhaupt keinen Sinn.
Allerdings ist das Ergebnis richtig.
Denn [mm] $a(x_1^2-x_1'^2)=a(x_1-x_1')(x_1+x_1')=b(x_2-x_2')(x_1+x_1')$, [/mm] durch Einsetzen von I.
Damit kann man, mit geeigneter Fallunterscheidung ,in der II durch [mm] $b(x_2-x_2')$ [/mm] teilen und erhält das Ergebnis.

> Würde mich sehr über antworten freuen
>  MfG
>  Olli  

Ob die Lösungen jeweils richtig sind hab ich nicht nachgeprüft.


Bezug
                
Bezug
Lösen eines einfachen LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:03 Mo 12.05.2014
Autor: Olli1968

Danke MaslanyFanclub für die schnelle Antwort ...

Bezug
                
Bezug
Lösen eines einfachen LGS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:41 Mo 12.05.2014
Autor: Olli1968

Hallo nochmal,

also ich habe nochmal alles durchgerechnet und nun folgendes erhalten
(statt [mm]\alpha[/mm] und [mm]\beta[/mm] setzte ich nun a und b ein).

I: [mm] a(x_{1}-x'_{1})=b(x'_{2}-x_{2})[/mm]
II: [mm] a(x_{1}^{2}-x'_{1}^{2})=b(x'_{2}^{2}-x_{2}^{2})[/mm]

Dividiere nun beide Gleichungungen jeweils mit b und stelle beide Seiten nach [mm]x'_{2}[/mm] bzw. [mm]x'_{2}^{2}[/mm] um und erhalte

I: [mm]\bruch{a}{b}(x_{1}-x'_{1})+x_{2}=x'_{2} [/mm]
II: [mm]\bruch{a}{b}(x_{1}^{2}-x'_{1}^{2})+x_{2}^{2}=x'_{2}^{2}[/mm]

Nun setzte ich I in II ein und erhalte

[mm]\bruch{a}{b}(x_{1}^{2}-x'_{1}^{2})+x_{2}^{2}=(\bruch{a}{b}(x_{1}-x'_{1})+x_{2})^{2}=(\bruch{a}{b})^{2}(x_{1}-x'_{1})^{2}+2\bruch{a}{b}x_{2}(x_{1}-x'_{1})+x_{2}^{2}[/mm]

und somit

[mm]\bruch{a}{b}(x_{1}^{2}-x'_{1}^{2})=(\bruch{a}{b})^{2}(x_{1}-x'_{1})^{2}+2\bruch{a}{b}x_{2}(x_{1}-x'_{1})[/mm]

dividiere nun mit [mm]\bruch{a}{b}(x_{1}-x'_{1})[/mm] und erhalte

[mm]x_{1}+x'_{1}=\bruch{a}{b}(x_{1}-x'_{1})+2x_{2}[/mm]

stelle nun nach [mm]x'_{1}[/mm] um und erhalte

[mm] x'_{1}=\bruch{(\bruch{a}{b}-1)x_{1}+2x_{2}}{1+\bruch{a}{b}} [/mm]

erweitere die einzelnen Terme mit b und erhalte

[mm] x'_{1}=\bruch{\bruch{a-b}{b}x_{1}+\bruch{2bx_{2}}{b}}{\bruch{a+b}{b}}= \bruch{(a-b)x_{1}+2bx_{2}}{a+b} [/mm]

und somit

[mm] x'_{1}=\bruch{ax_{1}+b(2x_{2}-x_{1})}{a+b}[/mm]

das stimmt nun mit der Lösung vom Lehrer überein ...

Frage: Kann man die Gleichungen dann doch dividieren (II : I)?

LG
Olli

Bezug
                        
Bezug
Lösen eines einfachen LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Mo 12.05.2014
Autor: fred97

Gleichungen kann man durchaus "dividieren":

Sei

(1) A=B

und


(2) a=b.

Ist a [mm] \ne [/mm] 0, so ist

   [mm] \bruch{A}{a}=\bruch{B}{a}=\bruch{B}{b} [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de