www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Lösen von Differentialgleichun
Lösen von Differentialgleichun < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen von Differentialgleichun: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:05 Mi 17.11.2010
Autor: Glamdrill

Aufgabe
x'=x^(1/3)  mit x(0) = 0;

Hallo

ich stehe hier grad bissel aufm Schlauch und komme nicht auf die Lösung dieser differentialgleichung. Kann mir jemand helfen?

Danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Lösen von Differentialgleichun: Trennung der Variablen
Status: (Antwort) fertig Status 
Datum: 13:11 Mi 17.11.2010
Autor: Roadrunner

Hallo Glamdrill,

[willkommenmr] !!


Welche Verfahren zur Lösung von DGL's kennst Du denn?
Hier kommst Du mittels Trennung der Variablen schnell zum Ziel.

[mm]x' \ = \ \bruch{dx}{dt} \ = \ x^{\bruch{1}{3}}[/mm]

[mm]\blue{\integral}{x^{-\bruch{1}{3}} \ dx} \ = \ \blue{\integral}{dt}[/mm]


Gruß vom
Roadrunner


Bezug
        
Bezug
Lösen von Differentialgleichun: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 Mi 17.11.2010
Autor: Glamdrill

d.h. also eine Lösung wäre x = (2/3*t)^(3/2)

Bezug
                
Bezug
Lösen von Differentialgleichun: Antwort
Status: (Antwort) fertig Status 
Datum: 13:47 Mi 17.11.2010
Autor: schachuzipus

Hallo,

> d.h. also eine Lösung wäre x = (2/3*t)^(3/2)

Ja, das wäre eine Lösung. Üblicherweise tritt bei der unbestimmten Integration aber eine Integrationskonstante auf, du hast also nach dem Integrieren:

[mm]\frac{3}{2}\cdot{}\left(x(t)\right)^{\frac{2}{3}} \ = \ t \ + \ C[/mm]

Gruß

schachuzipus


Bezug
                
Bezug
Lösen von Differentialgleichun: Antwort
Status: (Antwort) fertig Status 
Datum: 13:58 Mi 17.11.2010
Autor: fred97

Mit der Methode "Trennung der Var." geht Dir aber eine Lösung des AWPs



             x'=x^(1/3) , x(0) = 0

flöten:  [mm] x\equiv0 [/mm]   auf [0, [mm] \infty) [/mm]

FRED

              

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de