www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Lösen von Exponentialfunktione
Lösen von Exponentialfunktione < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen von Exponentialfunktione: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 So 03.10.2004
Autor: ihtyhmssngr

Hallo,
ich verzweifel an folgender Exponentialfunktion:
[mm] 2*0.25^{x} [/mm] = [mm] 4^{x} [/mm]

Ich habe schon versucht alle Glieder auf eine Basis zu bringen, bekomme aber immer das falsche Ergebnis. Wär nett wenn mir jemand einen Denkanstoß geben könnte.
Danke, Roland

PS: Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.uni-protokolle.de/foren/viewtopic.php?p=27742#27742

        
Bezug
Lösen von Exponentialfunktione: Antwort
Status: (Antwort) fertig Status 
Datum: 16:38 So 03.10.2004
Autor: Emily


Hallo,

Hallo Roland,

>  ich verzweifel an folgender Exponentialfunktion:
>  [mm]2*0.25^{x}[/mm] = [mm]4^{x} [/mm]

du hast die Exponentialgleichung:

[mm]2*0.25^{x}[/mm] = [mm]4^{x}[/mm]  

[mm]\gdw 2^1*\bruch{1}{4}^x[/mm] = [mm]4^{x} [/mm]denn [mm]\bruch{1}{4}=2^{-2}[/mm]

[mm]\gdw 2^1*2^{-2*x}[/mm] = [mm]2^{2*x}[/mm]  Potenzen zusammenfassen:

[mm]\gdw 2^{1-2*x}[/mm] = [mm]2^{2*x}[/mm]  


[mm]\gdw 1-2*x = 2*x[/mm]  


[mm]\gdw x = \bruch{1}{4}[/mm]  




Jetzt klar?

Liebe Grüße


Emily



Bezug
                
Bezug
Lösen von Exponentialfunktione: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:56 So 03.10.2004
Autor: Madnix

also diesen Lösungsweg hab ich jetzt nicht verstanden. Sollte man nicht nach x auflösen?

Bezug
                        
Bezug
Lösen von Exponentialfunktione: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:04 So 03.10.2004
Autor: ihtyhmssngr

Gut, das hab ich verstanden. Allerdings hab ich das gleiche schon vorher mit den Basen 4 und 0.25 versucht und es nicht hingekriegt.



Bezug
                        
Bezug
Lösen von Exponentialfunktione: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 17:10 So 03.10.2004
Autor: nitro1185

Hallo!!!

Er wollte dir nur sagen wie man die Gleichung anders hinschreibt!!!

Ich würde es so machen:

   [mm] 2*0,25^{x}=4^{x} [/mm]

  Logarithmiere die gleichung!!!!!!!

=>  [mm] lg{2}*lg{0,25^{x}}=lg{4^{x}} [/mm]

       [mm] lg{2*0,25^{x}}=lg{4^{x}} [/mm]

=>   [mm] lg{2}+lg{0,25^{x}}=lg{4^{x}} [/mm]

        lg{2}+x*lg{0,25}=x*lg{4}       jetzt kannt du es selber!!!!!


grüße daniel           Merke:  log(a*b)=log(a)+log(b)!!!!!!

Bezug
                                
Bezug
Lösen von Exponentialfunktione: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:31 Mo 04.10.2004
Autor: Marc

Hallo Daniel,

kleine Korrektur:

> [mm]2*0,25^{x}=4^{x} [/mm]
>  
> Logarithmiere die gleichung!!!!!!!
>  
> =>  [mm]lg{2}*lg{0,25^{x}}=lg{4^{x}} [/mm]

Diese [mm] $\uparrow$ [/mm] Gleichung ist falsch,
aber diese [mm] $\downarrow$ [/mm] ist richtig.
Ich würde die erste Gleichung einfach löschen, denn die untere folgt ja direkt durch das angekündigte Logarithmieren der beiden Seiten der Gleichung .

> [mm]lg{2*0,25^{x}}=lg{4^{x}} [/mm]

Ich schlage vor, du verbesserst deine Antwort, damit die unschöne Fehlerkennzeichnung verschwinden kann :-)

Viele Grüße,
Marc



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de