www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Lösen von Gleichungen
Lösen von Gleichungen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen von Gleichungen: Frage
Status: (Frage) beantwortet Status 
Datum: 19:00 So 05.06.2005
Autor: rotespinne

Hallo liebe Matheraum -User!

Ich habe noch ein Problem :

Lösen sie die Gleichungen in R nach x auf :

          [mm] \underline{x^{2}- x} [/mm]                                                    
        [mm] x^{2}-x+1 [/mm]                        -              


          [mm] \underline{x^{2}- x+2} [/mm]                         = 1
           [mm] x^{2}-x+2 [/mm]



Mir ist klar dass der zweite bruch 1 ergibt. dann hätte ich auf der linken seite den ersten bruch noch stehen und auf der rechten seite die 2.
Aber wie habe ich weiter vorzugehen? das was im ersten bruch im nenner steht könnte ich doch durch die pq formel errechnen oder? oder wie löse ich so etwas besser auf? DANKE!°

                    

        
Bezug
Lösen von Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 So 05.06.2005
Autor: Bastiane

Hallo!
Schade, dass du deinen mathem. Background nicht angibst - die Aufgabe scheint mir nämlich eigentlich Schul-Niveau zu haben, oder ich mach's mir zu einfach...?

> Lösen sie die Gleichungen in R nach x auf :
>  
> [mm]\underline{x^{2}- x}[/mm]                                        
>              
> [mm]x^{2}-x+1[/mm]                        -              
>
>
> [mm]\underline{x^{2}- x+2}[/mm]                         = 1
>             [mm]x^{2}-x+2[/mm]
>  
>
>
> Mir ist klar dass der zweite bruch 1 ergibt. dann hätte ich
> auf der linken seite den ersten bruch noch stehen und auf
> der rechten seite die 2.
>  Aber wie habe ich weiter vorzugehen? das was im ersten
> bruch im nenner steht könnte ich doch durch die pq formel
> errechnen oder? oder wie löse ich so etwas besser auf?
> DANKE!°

Deine Überlegung führt dann zu folgender Gleichung:

[mm] \bruch{x^2-x}{x^2-x+1} [/mm] = 2

Diese Gleichung multiplizierst du mit dem Nenner des Bruches und erhältst:

[mm] \gdw x^2-x=2x^2-2x+2 [/mm]

nun subtrahieren wir [mm] x^2 [/mm] und addieren x:

[mm] \gdw 0=x^2-x+2 [/mm]

und dies kannst du nun endlich mit der pq-Formel auflösen. Alles klar nun?

Viele Grüße
Bastiane
[cap]

P.S.: Mit dem Formeleditor kann man auch recht einfach Brüche schreiben. ;-)


Bezug
                
Bezug
Lösen von Gleichungen: rückmeldung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:12 So 05.06.2005
Autor: rotespinne

Danke :) das hatte ich ja soweit, war mir aber sehr unsicher.....

dennoch hätte ich noch ein problem mit einer wurzelgleichung, da komme ich gar nicht weiter. könntest du mir da vielleicht auch noch helfen? das wäre folgende:

[mm] \wurzel{x \wurzel[5]{x}} [/mm]       -      [mm] \wurzel[5]{x\wurzel{x}} [/mm]   = 56


wenn ich so etwas sehe bnin ich immer sofort blockiert :(




Bezug
                        
Bezug
Lösen von Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 So 05.06.2005
Autor: Loddar

.


"Folge"-Frage hier als eigenständiger Thread nochmals gestellt!






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de