www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Lösung
Lösung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung: Muss die LÖSUNGEN finden
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:48 Mo 08.01.2007
Autor: dreamer_2609

Aufgabe
Sei [mm] (a_{n})_{n} \in \IN [/mm] eine fallende Folge in [mm] (0;\infty), [/mm] sodass [mm] \summe_{n \in \IN}^{} a_{n} [/mm] konvergiert.
Zeigen Sie, dass dann [mm] \limes_{n\rightarrow\infty} na_{n} [/mm] = 0 gilt.

Muss die Aufgaben lösen um noch ei paar Punkte zu bekommen...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Mo 08.01.2007
Autor: leduart

Hallo dreamer
1. Du hast deine Aufgabe nicht richtig aufgeschrieben. sieh sie vor dem abschicken mit vorschau an, auch wenns ne Minute dauert.
2. was weisst du denn über Konvergenz von Reihen, welches Konvergenzkriterium könntest du anwenden.
nimm an n*an bleibt endlich, was würde das für die Summe bedeuten?
ein paar eigene Gedanken solltest du für deine Punkte schon aufwenden.
Gruss leduart

Bezug
                
Bezug
Lösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:44 Mo 08.01.2007
Autor: dreamer_2609

Habe jetzt alles korreigiert, quäle mich ziemlich durch analysis und nach dem Semster habe ich es auch nciht mehr von daher nur reine Theorie zu Konvergenz sprich die Standart Kriterien.

Bezug
                        
Bezug
Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:51 Mo 08.01.2007
Autor: leduart

Hallo
Eine der NOTWENDIGEN (nicht hinreichenden) Kriterien ist, dass die an eine Nullfolge bilden: das ist sicher erfüllt, wenn n*an gegen 0 konv.
Sonst Widerspruchsbeweis
falls n*an nicht gegen 0 konvergiert, dann gilt für unendlich viele [mm] an*n\ge [/mm] a oder an>a/n dann ist die Harmonische Reihe eine Minorante, und die Summe konvergiert nicht.
(Ich glaub nicht, dass du in Wirtschaftsmathe nie mehr Analysis und Konvergenz brauchst.)
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de