www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Lösung Induktion
Lösung Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:41 Do 24.11.2011
Autor: racy90

Hallo,

Ich hab folgende Induktionsbeweis zu lösen gehabt

Ich hab zeigen sollen das [mm] f(x)=2^{n-1}*ne^{2x}+2^n*xe^{2x} [/mm] die n-te Ableitung von [mm] xe^{2x} [/mm]

Die Induktion habe ich richtig nur hab ich jetzt 2 Ergebnisse,eines von der (n+1) Ableitung und eines wo ich n durch n+1 ersetzt habe.

Der TR gibt mir an das die Gleichung stimmt wenn ich sie gegenüberstelle aber ich bin anscheinend zu blöd zum umformen

n+1 eingesetzt ergibt : [mm] 2^{n-1}*ne^{2x}+2^{n-1}*e^{2x}+2^n*xe^{2x} [/mm]

und die n+1 Ableitung [mm] 2^n*n*2e^{2x}+2^n*e^{2x}+2xe^{2x} [/mm]

        
Bezug
Lösung Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Do 24.11.2011
Autor: MathePower

Hallo racy90,

> Hallo,
>  
> Ich hab folgende Induktionsbeweis zu lösen gehabt
>  
> Ich hab zeigen sollen das [mm]f(x)=2^{n-1}*ne^{2x}+2^n*xe^{2x}[/mm]
> die n-te Ableitung von [mm]xe^{2x}[/mm]
>  
> Die Induktion habe ich richtig nur hab ich jetzt 2
> Ergebnisse,eines von der (n+1) Ableitung und eines wo ich n
> durch n+1 ersetzt habe.
>  
> Der TR gibt mir an das die Gleichung stimmt wenn ich sie
> gegenüberstelle aber ich bin anscheinend zu blöd zum
> umformen
>  
> n+1 eingesetzt ergibt :
> [mm]2^{n-1}*ne^{2x}+2^{n-1}*e^{2x}+2^n*xe^{2x}[/mm]
>  
> und die n+1 Ableitung [mm]2^n*n*2e^{2x}+2^n*e^{2x}+2xe^{2x}[/mm]  


Es muss doch hier stehen:

[mm]2^{n\blue{-1}}*n*2e^{2x}+2^n\left\blue{(}*e^{2x}+2xe^{2x}\right\blue{)}[/mm]  


Gruss
MathePower


Bezug
                
Bezug
Lösung Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 Do 24.11.2011
Autor: racy90

Aja hab die Klammer vergessen :S

Wenn ich nun von [mm] f(x)=xe^{2x} [/mm] die taylorreihe um a=0 berechne müsste das doch sein

[mm] \summe_{n=1}^{\infty}\bruch{xe^{2x}}{n!}*x^n [/mm]


Bezug
                        
Bezug
Lösung Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 Do 24.11.2011
Autor: MathePower

Hallo racy_90,

> Aja hab die Klammer vergessen :S
>  
> Wenn ich nun von [mm]f(x)=xe^{2x}[/mm] die taylorreihe um a=0
> berechne müsste das doch sein
>  
> [mm]\summe_{n=1}^{\infty}\bruch{xe^{2x}}{n!}*x^n[/mm]
>  


DIe Taylorreihe von f um a=0 lautet doch:

[mm]\summe_{n=0}^{\infty}\bruch{f^{n}\left(0\right)}{n!}*x^n[/mm]


Gruss
MathePower

Bezug
                                
Bezug
Lösung Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:57 Do 24.11.2011
Autor: racy90

ja und wenn ich in die n-te Ablleitung a=0 einsetze bleibt eben [mm] xe^{2x} [/mm] übrig

Bezug
                                        
Bezug
Lösung Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Do 24.11.2011
Autor: MathePower

Hallo racy90,

> ja und wenn ich in die n-te Ablleitung a=0 einsetze bleibt
> eben [mm]xe^{2x}[/mm] übrig


Übrig bleibt doch: [mm]2^{n-1}*n[/mm]


Gruss
MathePower

Bezug
                                                
Bezug
Lösung Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:09 Do 24.11.2011
Autor: racy90

Gedankenfehler,ich hatte in n eingesetzt..

danke!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de