www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Lösung einer DGL gesucht
Lösung einer DGL gesucht < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung einer DGL gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:24 Do 12.02.2009
Autor: hayabusa

Aufgabe
Löse folgende Anfangswertaufgabe:
[mm] y(t_0)=y_0 [/mm]
[mm] y'=-\lambda*y+ r*\exp(-\mu*t), [/mm]
[mm] \lambda [/mm] ist die relative Zerfallsrate von Blei,
[mm] \mu [/mm] ist die Zerfallsrate von Radium,
r ist eine positve Konstante.


Mein erstes Problem ist, dass ich nicht weiß, ob es eine inhomogene DGL ist?
Überhaupt fällt es mir schwer den Typ dieser DGL festzustellen?
Habe in meinem Skript folgende Notiz : y'=f(a*t+b*y+c) gefunden. Was für Funktionen auf der rechten Seite werden damit symbolisiert? Ich habe die Vermutung, dass meine Aufgabe von solch einem Typ ist.

        
Bezug
Lösung einer DGL gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 11:32 Do 12.02.2009
Autor: Zwerglein

Hi, hayabusa,

> Löse folgende Anfangswertaufgabe:
>  [mm]y(t_0)=y_0[/mm]
>  [mm]y'=-\lambda*y+ r*\exp(-\mu*t),[/mm]
>  [mm]\lambda[/mm] ist die relative
> Zerfallsrate von Blei,
>  [mm]\mu[/mm] ist die Zerfallsrate von Radium,
>  r ist eine positve Konstante.
>  
> Mein erstes Problem ist, dass ich nicht weiß, ob es eine
> inhomogene DGL ist?

Ja! Genauer gesagt handelt es sich hierbei um eine lineare DGL 1.Ordnung.
Die zugehörige homogene DGL lautet: y' + [mm] \lambda*y [/mm] = 0

>  Überhaupt fällt es mir schwer den Typ dieser DGL
> festzustellen?
> Habe in meinem Skript folgende Notiz : y'=f(a*t+b*y+c)
> gefunden. Was für Funktionen auf der rechten Seite werden
> damit symbolisiert?

Bei dieser Schreibweise kann ich Dir leider nicht weiterhelfen!

Rückfrage: Wie man eine lineare DGL 1.Ordnung löst, ist Dir aber bekannt, oder?
(1.Schritt: allgemeine Lösung [mm] y_{h} [/mm] der homogenen DGL.
2.Schritt: spezielle Lösung [mm] y_{s} [/mm] der inhomogenen meist mit Hilfe der Variation der Konstanten.
3.Schritt: [mm] y=y_{h} [/mm] + [mm] y_{s}; [/mm] Anfangswerte einsetzen c berechnen)

mfG!
Zwerglein  

Bezug
                
Bezug
Lösung einer DGL gesucht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:43 Do 12.02.2009
Autor: hayabusa

Danke für die Antwort. Jetzt sehe ich auch, dass es sich um eine lineare DGL 1.Ordnung handelt. Die Betonung liegt auf linear.
Im Skript steht, dass lineare folgende Gestalt haben: y'+a(t)*y=b(t)
In meinem Fall muss wohl [mm] a(t)=\lambda [/mm] sein und [mm] b(t)=r*exp(-\mu*t). [/mm]

Bezug
                        
Bezug
Lösung einer DGL gesucht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:46 Do 12.02.2009
Autor: Zwerglein

Hi, hayabusa,

> Im Skript steht, dass lineare folgende Gestalt haben:
> y'+a(t)*y=b(t)
>  In meinem Fall muss wohl [mm]a(t)=\lambda[/mm] sein und
> [mm]b(t)=r*exp(-\mu*t).[/mm]  

Stimmt genau! ;-)

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de