www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Lösung komplexer Gleichung
Lösung komplexer Gleichung < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung komplexer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:19 Di 28.02.2012
Autor: Blerg

Aufgabe
[mm] z^{5}-16+16\wurzel{3}*i=0 [/mm]

Hallo,
ich bitte um Hilfe bei dieser Aufgabe.
Ich finde nichtmal einen Ansatz, wie ich an das ganze rangehen soll.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Danke im Vorraus

        
Bezug
Lösung komplexer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:03 Di 28.02.2012
Autor: Valerie20

Hi!


> [mm]z^{5}-16+16\wurzel{3}*i=0[/mm]
>  Hallo,
>  ich bitte um Hilfe bei dieser Aufgabe.
>  Ich finde nichtmal einen Ansatz, wie ich an das ganze
> rangehen soll.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Danke im Vorraus

Du möchtest in dieser Gleichung alle Lösungen für z finden.
Forme den Term also in diese Form um:

[mm] $z^5=......$ [/mm]

Danach Wandelst du die komplexe Zahl auf der rechten Seite in die Exponentialform um und berechnest dir die Lösungen.

Valerie


Bezug
                
Bezug
Lösung komplexer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:20 Di 28.02.2012
Autor: Blerg

Aufgabe
[mm] z=\wurzel{(\wurzel[5]{16} + \wurzel[5]{-16*\wurzel{3}i})}*e^{i*arctan(\bruch{\wurzel[5]{16}}{\wurzel[5]{-16*\wurzel{3}}}} [/mm]

ist das so richtig?
wenn ja danke für die hilfe :)

Bezug
                        
Bezug
Lösung komplexer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:32 Di 28.02.2012
Autor: leduart

Hallo
ich seh nicht was du gemacht hast.
Betrag einer Komplexen Zahl a+ib  ist [mm] r=\wurzel{a^2+b^2} [/mm]
der winkel zu x-achs ist [mm] \phi=arctan(b/a) [/mm] wobei du noch  da ja tan periodisch ist in welchen Quadranten deine Zahl liegt
dann hast du dein [mm] a+ib=r*e^{i*(\phi+k*2\pi)} [/mm]
Die Gleichung hat 5 Losungen!
also aufs neue:
gruss leduart

Bezug
                                
Bezug
Lösung komplexer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:58 Di 28.02.2012
Autor: Blerg

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Ich schreib das jetz nochmal schrittweise hin, wie ich vorgegangen bin und ich hoffe ihr könnt mir dann sagen wo genau mein fehler liegt.

1. Ausgangsgleichung:$ z^{5}-16+16\wurzel{3}\cdot{}i=0 $
2. nach z umstellen: z=\wurzel[5]{16-16\wurzel{3}\cdot{}i}
3. a=\wurzel[5]{16}
   b=\wurzel[5]{-16\wurzel{3}}
4. r=a²+b²=$ z=\wurzel{(\wurzel[5]{16} + \wurzel[5]{-16\cdot{}\wurzel{3}i})} $
5. $ \phi=arctan(b/a) $ = $ arctan \bruch{\wurzel[5]{16}}{\wurzel[5]{-16\cdot{}\wurzel{3}}}} $
6. z=$ a+ib=r\cdot{}e^{i\cdot{}(\phi+k\cdot{}2\pi)} $ = $ \wurzel{(\wurzel[5]{16} + \wurzel[5]{-16\cdot{}\wurzel{3}i})}\cdot{}e^{i\cdot{}arctan\bruch{\wurzel[5]{16}}{\wurzel[5]{-16\cdot{}\wurzel{3}}}} $

dann müsst ich ja das erste z rausbekommen oder?


Bezug
                                        
Bezug
Lösung komplexer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:29 Di 28.02.2012
Autor: MathePower

Hallo Blerg,

> Ich schreib das jetz nochmal schrittweise hin, wie ich
> vorgegangen bin und ich hoffe ihr könnt mir dann sagen wo
> genau mein fehler liegt.
>  
> 1. Ausgangsgleichung:[mm] z^{5}-16+16\wurzel{3}\cdot{}i=0[/mm]
>  2.
> nach z umstellen: [mm]z=\wurzel[5]{16-16\wurzel{3}\cdot{}i}[/mm]
>  3. [mm]a=\wurzel[5]{16}[/mm]
>     [mm]b=\wurzel[5]{-16\wurzel{3}}[/mm]


Das darfst Du so nicht machen.


Es ist doch:

[mm]a=16[/mm]
[mm]b=-16\wurzel{3}[/mm]



>  4. r=a²+b²=[mm] z=\wurzel{(\wurzel[5]{16} + \wurzel[5]{-16\cdot{}\wurzel{3}i})}[/mm]

>


Damit ergibt sich [mm]r=\wurzel[5]{a^{2}+b^{2}}= \ ...[/mm]

  

> 5. [mm]\phi=arctan(b/a)[/mm] = [mm]arctan \bruch{\wurzel[5]{16}}{\wurzel[5]{-16\cdot{}\wurzel{3}}}}[/mm]

>


Auch das stimmt nicht.

[mm]\phi=arctan(b/a) = arctan \bruch{16}{-16\cdot{}\wurzel{3}}=\ ...[/mm]


>
> 6. z=[mm] a+ib=r\cdot{}e^{i\cdot{}(\phi+k\cdot{}2\pi)}[/mm] =
> [mm]\wurzel{(\wurzel[5]{16} + \wurzel[5]{-16\cdot{}\wurzel{3}i})}\cdot{}e^{i\cdot{}arctan\bruch{\wurzel[5]{16}}{\wurzel[5]{-16\cdot{}\wurzel{3}}}}[/mm]
>  
> dann müsst ich ja das erste z rausbekommen oder?

>


Deine Rechnung stmmt nicht.

Es kommt dann heraus: [mm]z_{k} =r*e^{i*\bruch{\phi+2*k*\pi}{5}}, \ k=0,1,2,3,4[/mm]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de