www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Lösung von Matrizen mit Variab
Lösung von Matrizen mit Variab < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung von Matrizen mit Variab: Hilfesttelung zur Lösung
Status: (Frage) beantwortet Status 
Datum: 21:00 Sa 29.10.2011
Autor: bonzai0710

Aufgabe 1
für welche [mm] t\in\IR [/mm] besitzt das Gleichungssystem Ax = 0 mit

[mm] \pmat{ 1-t & 2 & -3 \\ 2 & 1-t & -6 \\ -4 & 4 & 6-t } [/mm]

keine triviale Lösung.

Zweiter Teil
für welche [mm] t\in\IR [/mm] besitzt das gleichungssystem Ax = b eine Lösung wenn

b = [mm] \pmat{ 1 \\ 2 \\ -1 } [/mm]

Aufgabe 2
Man untersuche, für welche [mm] k\in\IR [/mm] das folgende Gleichungssystem
a) lösbar ist
b) eindeutig lösbar ist

[mm] x_{1} [/mm] + [mm] x_{2} [/mm] + [mm] k*x_{3} [/mm] = 1
[mm] x_{1} [/mm] + [mm] k*x_{2} [/mm] + [mm] x_{3} [/mm] = 1
[mm] k*x_{1} [/mm] + [mm] x_{2} [/mm] + [mm] x_{3} [/mm] = -2

Also ich hab beide Beispiel umgeformt komme dabei auf folgende dinge:
Für aufgabe 1 erster Teil:

wichtig ich habe die 3 und die erste zeile vertauscht meine Matrize schaut daher so aus:

[mm] \pmat{ -4 & 4 & 6-t & 0 \\ 2 & 1-t & -6 & 0\\ 1-t & 2 & -3 & 0} [/mm]

mein ergebnis:
[mm] \pmat{ -4 & 4 & 6-t & 0\\ 0 & 3-t & -\bruch{t}{2} & 0 \\ 0 & 0 & \bruch{-6-5t-t^{2} }{4} & 0} [/mm]

Bei aufgabe zwei war mein anfang:

[mm] \pmat{1 & 1 & k & 1\\ 1 & k & 1 & 1 \\ k & 1 & 1 & -2} [/mm]

Mein ergebnis war:
[mm] \pmat{1 & 1 & k & 1\\ 0 & k-1 & 1-k & 0 \\ 0 & 0 & k-k^{2} & -2-k} [/mm]

Meine frage ist jetzt und was nun?
Was muss ich jetzt machen um forwärts zu kommen?

Ich dachte mir ich könnte das ganze als Quadratische Gleichung lösen jedoch müsste ich doch dann doch die x werte berücksichten und dann lies sich das nicht lösen. für eure hilfestellung wäre ich sehr dankbar. Die Klausur ist zwar noch weit weg aber dennoch will ich das übungsblatt gelöst haben ^^

[mm] \\_------------------------------- [/mm]
Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Lösung von Matrizen mit Variab: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:06 Sa 29.10.2011
Autor: donquijote

Aufgaben dieser Art werden typischerweise mit Hilfe der Determinante der Koeffizientenmatrix gelöst...

Bezug
        
Bezug
Lösung von Matrizen mit Variab: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Sa 29.10.2011
Autor: leduart

Hallo
du kannst doch einfach fesstellen für welche tdu eine nicht triviale lösung findest. nimm etwa den Ausdruck für t in der 3. ten Zeile.
was ist wenn er 0 ist? wenn er ungleich 0 ist ? dsann mach so weiter. lös einfach die jeweilignen GS und stell fest ob und welche lösungen es in Abh. von t bzw k gibt.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de