www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Lösung zum Integral
Lösung zum Integral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung zum Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:14 Di 24.03.2009
Autor: glamcatol

Aufgabe
geg : f(x) = [mm] \bruch{x}{1-x²} [/mm]    gesucht F(x)

Hi, wir fangen gerade mit Integralen an und sollen per Substitutions Regel und Partielle Regel halt ein paar Integrale Lösen.

In der Schule war das eigentlich kein Problem nur steh ich bei dem Ding hier voll auf dem Schlauch und komm nicht weiter.

Würde mich ueber Hilfe freuen

Mfg

        
Bezug
Lösung zum Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 12:18 Di 24.03.2009
Autor: fred97


> geg : f(x) = [mm]\bruch{x}{1-x²}[/mm]    gesucht F(x)
>  Hi, wir fangen gerade mit Integralen an und sollen per
> Substitutions Regel und Partielle Regel halt ein paar
> Integrale Lösen.
>  
> In der Schule war das eigentlich kein Problem nur steh ich
> bei dem Ding hier voll auf dem Schlauch und komm nicht
> weiter.
>  
> Würde mich ueber Hilfe freuen



Die Substitution $u = [mm] 1-x^2$ [/mm] hilft hier weiter

FRED

>
> Mfg


Bezug
                
Bezug
Lösung zum Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:38 Di 24.03.2009
Autor: glamcatol

ach mensch ja klar, dann kürzt sich ja x mit u'  weg und es bleibt

[mm] -\bruch{1}{2}\integral_{a}^{b}{\bruch{1}{u} du} [/mm]  und das ja easy.



Also das Problem ist das unser Prof da anders rangeht halt und versucht mit

[mm] \integral_{a}^{b}{f(x) dx} [/mm] = [mm] \integral_{a}^{b}{f((xt)) * x'(t) dt} [/mm]

mit x = x(t)   zu arbeiten und ich kenn das halt nur mit "U" und fertig ist das ganze

Bezug
                        
Bezug
Lösung zum Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:48 Di 24.03.2009
Autor: glamcatol

Mh, nun hänge ich bei

[mm] \integral_{a}^{b}{\bruch{1}{e^{x}+1} dx} [/mm]


Wenn ich dort u = [mm] e^x+1 [/mm]  substituiere dann krieg ich da nen problem bei dx = [mm] \bruch{du}{u'} [/mm]  = [mm] \bruch{du}{e^x} [/mm]

und dann hab ich da zwar

[mm] \integral_{a}^{b}{{1}{u} {du}{e^x}} [/mm]  aber dann steht das [mm] e^x [/mm] ja doof da.

Naja und u =  [mm] e^x+1 [/mm]  nach x aufgelöst ergibt ja ln(u-1)

und e^ln(u-1)  ist u-1  und dann wäre das

[mm] \integral_{a}^{b}{\bruch{1}{u*(u-1)} du} [/mm]

und das verkompliziert das doch alles nur oder?

Bezug
                                
Bezug
Lösung zum Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:51 Di 24.03.2009
Autor: fred97


> Mh, nun hänge ich bei
>  
> [mm]\integral_{a}^{b}{\bruch{1}{e^{x}+1} dx}[/mm]
>  
>
> Wenn ich dort u = [mm]e^x+1[/mm]  substituiere dann krieg ich da nen
> problem bei dx = [mm]\bruch{du}{u'}[/mm]  = [mm]\bruch{du}{e^x}[/mm]





Es ist doch [mm] e^x [/mm] = u-1 , also

  dx = [mm]\bruch{du}{u'}[/mm]  = [mm]\bruch{du}{e^x}[/mm] = [mm]\bruch{du}{u-1}[/mm]

FRED






>  
> und dann hab ich da zwar
>  
> [mm]\integral_{a}^{b}{{1}{u} {du}{e^x}}[/mm]  aber dann steht das
> [mm]e^x[/mm] ja doof da.
>  
> Naja und u =  [mm]e^x+1[/mm]  nach x aufgelöst ergibt ja ln(u-1)
>  
> und e^ln(u-1)  ist u-1  und dann wäre das
>  
> [mm]\integral_{a}^{b}{\bruch{1}{u*(u-1)} du}[/mm]
>  
> und das verkompliziert das doch alles nur oder?


Bezug
                                
Bezug
Lösung zum Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Di 24.03.2009
Autor: schachuzipus

Hallo glamcatol,

> Mh, nun hänge ich bei
>  
> [mm]\integral_{a}^{b}{\bruch{1}{e^{x}+1} dx}[/mm]
>  
>
> Wenn ich dort u = [mm]e^x+1[/mm]  substituiere [ok] dann krieg ich da nen
> problem bei dx = [mm]\bruch{du}{u'}[/mm]  = [mm]\bruch{du}{e^x}[/mm]
>  
> und dann hab ich da zwar
>  
> [mm]\integral_{a}^{b}{{1}{u} {du}{e^x}}[/mm]  aber dann steht das
> [mm]e^x[/mm] ja doof da.
>  
> Naja und u =  [mm]e^x+1[/mm]  nach x aufgelöst ergibt ja ln(u-1)
>  
> und e^ln(u-1)  ist u-1  und dann wäre das
>  
> [mm]\integral_{a}^{b}{\bruch{1}{u*(u-1)} du}[/mm] [ok]

bis auf die Grenzen stimmt das.

Nun weiter mit Partialbruchzerlegung: Schreibe [mm] $\frac{1}{u(u-1)}=\frac{A}{u}+\frac{B}{u-1}$ [/mm]

Rechne $A,B$ aus und du hast die Summe zweier einfacher Integrale ..

>  
> und das verkompliziert das doch alles nur oder?

Nein, das klappt schon so ...

LG

schachuzipus

Bezug
                                        
Bezug
Lösung zum Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:01 Di 24.03.2009
Autor: glamcatol

Ach super danke, stimmt damit weiter geht das wirklich auf

Habe dann da F(x) = [mm] x-ln(e^x+1) [/mm] heraus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de