www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Lösungen für Pythagoras
Lösungen für Pythagoras < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungen für Pythagoras: Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 02:32 Do 28.10.2004
Autor: Fugre

Guten Abend zusammen,

mir kam gerade die Frage auf, wie ich beweisen kann, dass der Satz des Pythagoras unendlich viele ganzzahlige Lösungen hat.
Eine Lösung dazu kam mir auch, aber ich muss gestehen, dass sie eher primitiv ist. Deshalb möchte ich euch bitten meinen Ansatz zu kritisieren und vielleicht sogar einen eleganteren Weg aufzuzeigen.

Zunächst der Satz und die Behauptung:
Ich behaupte, dass dieser Ausdruck $ [mm] a^2+b^2=c^2 [/mm] $ unendlich viele ganzzahlige Lösungen hat!

Mein Ansatz:
Ich wähle $ 3 $ Zahlen die die Aussage wahr werden lassen $ 3, 4 und 5 $ und schreibe:
$ [mm] 3^2+4^2=5^2 [/mm] $

$ a, b, c [mm] \in \IN [/mm] $

Jetzt erweitere ich meine Zahlen mit der Zahl $ n $ die für alle Zahlen $ [mm] \in \IN [/mm] $ steht, so dass mein neuer Ausdruck lautet:
$ [mm] (3n)^2+(4n)^2=(5n)^2 [/mm] $
$ [mm] n^2*3^2+n^2*4^2=n^2*5^2 [/mm] $
$ [mm] 9n^2+16n^2=25n^2 [/mm] $

Da $ n $ für jede Zahl aus der unendlichen Zahlenmenge $ [mm] \IN [/mm] $ stehen kann und das Produkt aus ganzen Zahlen aus ganzen Zahlen besteht, gibt es unendlich viele ganzzahlige Lösungen für den Satz des Pythagoras! q.e.d.

Das ist jetzt ja alles schön und gut und ich habe bewiesen was ich beweisen wollte, aber wie kann ich die Lösungsmenge zumindest genauer bestimmen?
Denn ich konnte, wenn ich es richtig sehe, nur beweisen das ein unendlich großer Teil einer unendlich großen Menge $ [mm] \IN [/mm] $ die Lösungsmenge darstellt.

Wäre euch sehr verbunden, wenn ihr mir hier mal auf die Sprünge helft.

Liebe Grüße
Fugre :-)

        
Bezug
Lösungen für Pythagoras: Wikipedia
Status: (Antwort) fertig Status 
Datum: 08:25 Do 28.10.2004
Autor: informix


> Guten Abend zusammen,
>  
> mir kam gerade die Frage auf, wie ich beweisen kann, dass
> der Satz des Pythagoras unendlich viele ganzzahlige
> Lösungen hat.
>  Eine Lösung dazu kam mir auch, aber ich muss gestehen,
> dass sie eher primitiv ist. Deshalb möchte ich euch bitten
> meinen Ansatz zu kritisieren und vielleicht sogar einen
> eleganteren Weg aufzuzeigen.
>  
> Zunächst der Satz und die Behauptung:
>  Ich behaupte, dass dieser Ausdruck [mm]a^2+b^2=c^2[/mm] unendlich
> viele ganzzahlige Lösungen hat!
>  
> Mein Ansatz:
> Ich wähle [mm]3[/mm] Zahlen die die Aussage wahr werden lassen [mm]3, 4 und 5[/mm]
> und schreibe:
>  [mm]3^2+4^2=5^2[/mm]
>  
> [mm]a, b, c \in \IN[/mm]
>  
> Jetzt erweitere ich meine Zahlen mit der Zahl [mm]n[/mm] die für
> alle Zahlen [mm]\in \IN[/mm] steht, so dass mein neuer Ausdruck
> lautet:
>  [mm](3n)^2+(4n)^2=(5n)^2[/mm]
>  [mm]n^2*3^2+n^2*4^2=n^2*5^2[/mm]
>  [mm]9n^2+16n^2=25n^2[/mm]
>  
> Da [mm]n[/mm] für jede Zahl aus der unendlichen Zahlenmenge [mm]\IN[/mm]
> stehen kann und das Produkt aus ganzen Zahlen aus ganzen
> Zahlen besteht, gibt es unendlich viele ganzzahlige
> Lösungen für den Satz des Pythagoras! q.e.d.
>  
> Das ist jetzt ja alles schön und gut und ich habe bewiesen
> was ich beweisen wollte, aber wie kann ich die Lösungsmenge
> zumindest genauer bestimmen?
>  Denn ich konnte, wenn ich es richtig sehe, nur beweisen
> das ein unendlich großer Teil einer unendlich großen Menge
> [mm]\IN[/mm] die Lösungsmenge darstellt.
>  
> Wäre euch sehr verbunden, wenn ihr mir hier mal auf die
> Sprünge helft.

Schau mal []hier.
Liebe Grüße


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de