www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Lösungen in C
Lösungen in C < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungen in C: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:38 Mo 10.11.2008
Autor: nina1

Aufgabe
Lösen Sie in C folgende Gleichung:

[mm] z^{6}=1+i [/mm]

Hallo,

ich habe eine Frage. Und zwar ist ja der Winkel [mm] \bruch{\pi}{4} [/mm] aber was ist hier r?

wenn ich schreibe [mm] \wurzel[6]{1+i} [/mm] kann man ja davon nicht den Betrag [mm] |z|=r=\wurzel{x^{2}+y^{2}} [/mm] berrechnen.

Aber r braucht man ja fürs weitere Vorgehen.

Bzw. ist dann hier x=1 und y=1?

Wäre super, wenn mir jmd. vllt kurz sagen könnte, wie man hier auf das r kommt.


Viele Grüße.

        
Bezug
Lösungen in C: Lösung schon selber
Status: (Antwort) fertig Status 
Datum: 21:42 Mo 10.11.2008
Autor: Loddar

Hallo nina!


> Bzw. ist dann hier x=1 und y=1?

[daumenhoch] Ganz genau ...


Gruß
Loddar


Bezug
                
Bezug
Lösungen in C: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 Mo 10.11.2008
Autor: nina1

Achso, ok.

Aber bei einer anderen Aufgabe [mm] z^{3}=64 [/mm]

war z = [mm] \wurzel[3]{64} [/mm] = 4 Kann man hier auch sagen, dass r = 64 ist?

Warum muss man jetzt bei der anderen Aufgabe nicht die Wurzel ziehen?



Bezug
                        
Bezug
Lösungen in C: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 Mo 10.11.2008
Autor: schachuzipus

Hallo nina1,

> Achso, ok.
>  
> Aber bei einer anderen Aufgabe [mm]z^{3}=64[/mm]
>  
> war z = [mm]\wurzel[3]{64}[/mm] = 4 Kann man hier auch sagen, dass r
> = 64 ist?

Nein, du hast doch hier [mm] $z^6=1+i$, [/mm] also [mm] $\left|z^6\right|=|z|^6=|1+i|=\sqrt{1^2+1^2}=\sqrt{2}$ [/mm]

Also: [mm] $r=|z|=\sqrt[6]{\sqrt{2}}$ [/mm]

>  
> Warum muss man jetzt bei der anderen Aufgabe nicht die
> Wurzel ziehen?
>
>  

LG

schachuzipus

Bezug
                                
Bezug
Lösungen in C: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:20 Mo 10.11.2008
Autor: nina1

Ah, ok, danke. Kann man dann auch schreiben [mm] \wurzel[7]{2}? [/mm]



Es gibt ja jetzt 6 Lösungen.

Die erste Lösung wäre ja schonmal [mm] \wurzel[7]{2}*ex^{i* \bruch{\pi}{4}} [/mm]

Aber wenn ich jetzt die einzelnen Winkel berechne mit [mm] \alpha_{k} [/mm] = [mm] \bruch{\bruch{\pi}{4}}{6}+\bruch{2*\pi*k}{6} [/mm]

komme ich auf die Winkel

0. [mm] \bruch{1}{24}\pi [/mm]
1. [mm] \bruch{3}{4}\pi [/mm]
2. [mm] \bruch{17}{24}\pi [/mm]
3. [mm] \bruch{25}{24}\pi [/mm]
4. [mm] \bruch{33}{24}\pi [/mm]
5. [mm] \bruch{41}{24}\pi [/mm]

Aber da ist der Winkel [mm] \pi/4 [/mm] nicht enthalten. Hab ich da irgendwas nicht richtig gerechnet?


Bezug
                                        
Bezug
Lösungen in C: Antwort
Status: (Antwort) fertig Status 
Datum: 22:33 Mo 10.11.2008
Autor: leduart

Hallo
ausser der 2. sind deine loesungen alle richtig. addier noch mal [mm] \pi24+\pi/3 [/mm]
und warum soll da der urspruengliche Winkel wieder rauskommen?
Das kommt er beim Wurzelziehen selten  vor etwa bei [mm] 1^{1/6} [/mm] kommt als eine Loesung auch 1 raus.
Gruss leduart

Bezug
                                        
Bezug
Lösungen in C: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:50 Mo 10.11.2008
Autor: schachuzipus

Hallo nina1,

es ist [mm] $\sqrt[6]{\sqrt{2}}\neq\sqrt[7]{2}$ [/mm] !!

[mm] $\sqrt[6]{\sqrt{2}}=\sqrt[6]{\sqrt[2]{2}}=\sqrt[6\cdot{}2]{2}=\sqrt[12]{2}=2^{\frac{1}{12}}$ [/mm]

LG

schachuzipus

Bezug
                                                
Bezug
Lösungen in C: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:00 Mo 10.11.2008
Autor: nina1

Ah, das ist auch gut zu wissen.

Wenn man den ursprünglichen Winkel [mm] (\bruch{\pi}{4}) [/mm] in die Formel [mm] r*e^{i*\alpha} [/mm] einsetzt, so habe ich von anderen Aufgaben immer herausgelesen, dass das schonmal eine Lösung immer sei.

Warum wird das so immer geschrieben?

Bezug
                                                        
Bezug
Lösungen in C: Antwort
Status: (Antwort) fertig Status 
Datum: 00:25 Di 11.11.2008
Autor: leduart

Hallo
Kannst du mal die Aufgabe posten, bei der das rauskam oder kommt. Sonst versteh ich die frage nicht.
gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de