www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Logik" - Lösungsansätze/Lösungen
Lösungsansätze/Lösungen < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungsansätze/Lösungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:56 Di 04.11.2008
Autor: Gorchfock

Aufgabe
Untersuchen Sie, welche der folgenden aussagenlogischen Ausdrücke Tautologien sind.
a) [mm] (((p1\to [/mm] p2) [mm] \to [/mm] p3) [mm] \vee [/mm] ((p1 [mm] \to [/mm] p2) [mm] \to [/mm] ¬p3)),
b) ((p1 [mm] \wedge [/mm] p2) [mm] \vee [/mm] p3),
c) ((p1  p2) [mm] \gdw [/mm] (¬p2 [mm] \gdw [/mm] ¬p3)),
d) [mm] (¬((p1\vee [/mm] p2) [mm] \to [/mm] p3) [mm] \vee [/mm] p3).

ich habe dies per Wahrheitstafeln probiert zu lösen , doch komme ich somit darauf das keines davon eine Tautologie ist und das kanns ja im grunde nicht sein.Ich würde mich sehr über andere Lösungsansätze/Lösungen freuen
Mfg Gorchfock
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lösungsansätze/Lösungen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:34 Mi 05.11.2008
Autor: steppenhahn


> Untersuchen Sie, welche der folgenden aussagenlogischen
> Ausdrücke Tautologien sind.
>  a) [mm](((p1\to[/mm] p2) [mm]\to[/mm] p3) [mm]\vee[/mm] ((p1 [mm]\to[/mm] p2) [mm]\to[/mm] ¬p3)),
>  b) ((p1 [mm]\wedge[/mm] p2) [mm]\vee[/mm] p3),
>  c) ((p1  p2) [mm]\gdw[/mm] (¬p2 [mm]\gdw[/mm] ¬p3)),
>  d) [mm](¬((p1\vee[/mm] p2) [mm]\to[/mm] p3) [mm]\vee[/mm] p3).

Hallo!

Überprüfe deine Tabellen nochmal und denk dran: Aus falschem kann folgen, was will, es ist immer wahr. Meine Idee wäre ja gewesen, nicht eine Wahrheitstabelle aufzustellen (was natürlich auch geht), sondern die Aussage nach gültigen Regeln umzuformen.
Ich mach das mal mit der ersten:

[mm](((p1\Rightarrow p2) \Rightarrow p3) \vee ((p1 \Rightarrow p2) \Rightarrow ¬p3))[/mm]

[mm] \gdw [/mm] (Wegen [mm] $p1\Rightarrow [/mm] p2 [mm] \gdw (¬p1\vee [/mm] p2) )$

[mm](((¬p1\vee p2) \Rightarrow p3) \vee ((¬p1\vee p2) \Rightarrow ¬p3))[/mm]

[mm] \gdw [/mm] (Wie oben)

[mm]((¬(¬p1\vee p2) \vee p3) \vee (¬(¬p1\vee p2) \vee ¬p3))[/mm]

So und nun kann man diesen Term umformen (De Morgansche Regel: [mm] ¬(a\vee [/mm] b) [mm] \gdw [/mm] (¬a) [mm] \wedge [/mm] (¬b))

[mm]((p1\wedge ¬p2) \vee p3) \vee ((p1\wege ¬p2) \vee ¬p3)[/mm]

Und die Klammern zwischen den oders kann man jetzt weglassen:

[mm](p1\wedge ¬p2) \vee p3 \vee (p1\wege ¬p2) \vee ¬p3[/mm]

Und nun sieht man schon: Da steht u.A. drin: p3 [mm] \vee [/mm] ¬p3 - und das ist immer wahr, also ist es eine Tautologie und völlig unabhängig davon, wie man p1 oder p2 wählt. Kann man sich auch schon an der Anfangsform in der Aufgabenstellung sehen:

Wenn [mm] (p1\Rightarrow [/mm] p2) falsch ist, stimmt die Aussage vor dem Oder sowieso für jedes p3
Wenn [mm] (p1\Rightarrow [/mm] p2) wahr ist, stimmt entweder die erste Aussage für den Fall dass auch p3 wahr, oder die zweite wenn p3 falsch und somit ¬p3 wahr.

Versuche das bei den anderen auch nochmal zu überprüfen.

Stefan.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de