www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Lösungsweg für LGS mit Matrix.
Lösungsweg für LGS mit Matrix. < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungsweg für LGS mit Matrix.: Matrix, Gauß, LGS
Status: (Frage) beantwortet Status 
Datum: 16:23 Sa 06.01.2007
Autor: Merowingian

Aufgabe
Es ist a = [mm] \bruch{1}{2}(1 [/mm] + [mm] \wurzel{5}). [/mm]
Gesucht ist die Lösung für den Vektor v der folgenden Gleichung:

[mm] \pmat{ (1 - a) & 1 \\ 1 & -a } [/mm] * v = 0

Angeblich sollte man mit Gauß ALLE Lösungen finden können.
Ich finde damit aber nur v = [mm] \vektor{0 \\ 0}. [/mm]

Es soll aber auch die Lösung v = [mm] {\vektor{ax \\ x}, x \in \IR} [/mm] geben. Sie funktioniert auch, wenn man sie einsetzt.

Komischerweise kommt man aber mit Hilfe von Gauß überhaupt nicht auf diese Lösung. Dann scheint Gauß ja wohl doch nicht so allumfassend zu sein als Lösungsalgorithmus. Ich finde das sehr merkwürdig.

Also folgende Fragen:

1. Kommt man mit Gauß irgendwie doch zu der Lösung, und wenn ja, wie?
2. Wenn nicht, wie kommt man sonst zu der Lösung?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lösungsweg für LGS mit Matrix.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Sa 06.01.2007
Autor: zahlenspieler

Hallo Merowingian,
> Es ist a = [mm]\bruch{1}{2}(1[/mm] + [mm]\wurzel{5}).[/mm]
>  Gesucht ist die Lösung für den Vektor v der folgenden
> Gleichung:
>  
> [mm]\pmat{ (1 - a) & 1 \\ 1 & -a }[/mm] * v = 0
>  Angeblich sollte man mit Gauß ALLE Lösungen finden
> können.
>  Ich finde damit aber nur v = [mm]\vektor{0 \\ 0}.[/mm]

Schick doch mal Deine Lösung.

>  
> Es soll aber auch die Lösung v = [mm]{\vektor{ax \\ x}, x \in \IR}[/mm]
> geben. Sie funktioniert auch, wenn man sie einsetzt.
>  
> Komischerweise kommt man aber mit Hilfe von Gauß überhaupt
> nicht auf diese Lösung. Dann scheint Gauß ja wohl doch
> nicht so allumfassend zu sein als Lösungsalgorithmus. Ich
> finde das sehr merkwürdig.

Tja, dann hast Du dich wohl irgendwo verrechnet :-(.

>  
> Also folgende Fragen:
>  
> 1. Kommt man mit Gauß irgendwie doch zu der Lösung, und
> wenn ja, wie?
>  2. Wenn nicht, wie kommt man sonst zu der Lösung?

Lösung mit "Einsetzungsverfahren": Wir haben folgendes Gleichungssystem
[mm]\begin{array}(1-a)x&+y&=0 \\ x-ay=0&=0\end{array}[/mm].
Aus der 2. Gleichung ergibt sich $y=x/a$. Eingesetzt in die 1. Gleichung ergibt sich
[mm][mm] (1-a)x+\frac{1}{a}x=0$. [/mm] Nun ist aber $1-a [mm] +(1/a)=(-a^2+a+1)/a=0$; [/mm] d.h. Du kannst für x jede reelle Zahl wählen.
Mfg
zahlenspieler


Bezug
                
Bezug
Lösungsweg für LGS mit Matrix.: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 02:09 So 07.01.2007
Autor: Merowingian

Ich verstehe nicht, warum [mm] \bruch{-a^{2} + a + 1}{a} [/mm] = 0 sein soll.

Mein Lösungsweg:

Gl. 1 ergibt (1 - a)x + y  = 0
Gl. 2 ergibt  x - ay = 0


Gl. 1 ergibt (1 - a)x + y  = 0
Gl. 3 = [mm] \bruch{-Gl. 1}{1 - a} [/mm] + Gl. 2 ergibt -(a + [mm] \bruch{1}{1 - a})y [/mm] = 0


Gl. 4 = [mm] \bruch{Gl. 1}{1 - a} [/mm] ergibt x + [mm] \bruch{y}{1 - a} [/mm] = 0
Gl. 5 = [mm] \bruch{Gl. 2}{-(a + \bruch{1}{1 - a})} [/mm] ergibt y = 0


Aus dem Einsetzen von y in Gl. 4 folgt dann x = 0.

Bezug
                        
Bezug
Lösungsweg für LGS mit Matrix.: Antwort
Status: (Antwort) fertig Status 
Datum: 03:07 So 07.01.2007
Autor: unknown

Hallo,


ein Fehler steckt in Gleichung 5, denn
[mm] a + \frac{1}{1-a} = \frac{(1 - a)\cdot a + 1}{1-a} = \frac{-1 + 1}{1-a} = 0. [/mm]
Nebenrechnung:
[mm] a \cdot (1 - a) = \Bigl(\frac12 (1 + \sqrt5)\Bigr)\cdot\Bigl(\frac12(2 - 1 - \sqrt5)\Bigr) = \frac14 \Bigl( (1 + \sqrt5)(1 - \sqrt5) \Bigr) = \frac14(1 - 5) = -1. [/mm]
Wenn Du die Nebenrechnung genau ansiehst, kannst Du übrigens feststellen, daß in Deiner Matrix $(-a)$-mal die erste Zeile bereits gleich der zweiten ist. Damit solltest Du die Lösung schneller bekommen.

Hoffe, ich konnte helfen.

PS: Falls Du das schon hattest, ist es meistens übersichtlicher den Gauß direkt mit Matrizen zu aufzuschreiben. Dann findet man seine Fehler auch leichter. (Glaub' mir, ich hab's auch auf die "harte Art" gelernt...).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de