www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Log-Funktion
Log-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Log-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:34 Mi 21.02.2007
Autor: Gerlili

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich wollte mal fragen wie man diese Aufgabe rechnet:

[mm] 3,2^x=2,6^{x+1} [/mm]

        
Bezug
Log-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 Mi 21.02.2007
Autor: Teufel

Hallo!

Dazu brauchst du ein paar Potenzgesetze.

[mm] a^{m+n}=a^m*a^n [/mm]

[mm] \bruch{a^x}{b^x}=(\bruch{a}{b})^x [/mm]

Mit den beiden kannst du die Gleichung gut umstellen und in eine Form [mm] a^x=b [/mm] bringen.

Bezug
                
Bezug
Log-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:45 Mi 21.02.2007
Autor: Gerlili

Kannst du mir das an meiner Aufgabe erkläre?

Bezug
                        
Bezug
Log-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Mi 21.02.2007
Autor: Teufel

[mm] 3,2^x=2,6^{x+1} [/mm]

Nagut ;) Schau her:

[mm] 3,2^x=2,6^{x+1} [/mm]
[mm] 3,2^x=2,6^x*2,6^1=2,6^x*2,6 |:2,6^x [/mm]
[mm] \bruch{3,2^x}{2,6^x}=2,6 [/mm]
[mm] (\bruch{3,2}{2,6})^x=2,6 [/mm]

Weißt du wie man sie jetzt löst?


Bezug
                                
Bezug
Log-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:53 Mi 21.02.2007
Autor: Gerlili

man muss doch jetzt nur   log3,2/log2,6  oder?

Bezug
                                        
Bezug
Log-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 Mi 21.02.2007
Autor: Teufel

Hm nein!

Also, wenn du sowas hast wie [mm] a^x=b [/mm] kannst du das ja umformen zu x=log_ab.

Und hier bei der Aufgabe wär das:

[mm] x=log_\bruch{3,2}{2,6}2,6 [/mm]

Und damit [mm] x=\bruch{lg2,6}{lg\bruch{3,2}{2,6}}[/mm]

Bezug
                                                
Bezug
Log-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:59 Mi 21.02.2007
Autor: Gerlili

ja gut, das versteh ich ;) was hast du den als ergebnis raus?

Bezug
                                                        
Bezug
Log-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:02 Mi 21.02.2007
Autor: Teufel

Sollten ca. 4,6 sein ;)

Bezug
                                                                
Bezug
Log-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:09 Mi 21.02.2007
Autor: Gerlili

anscheid kapier ich dass nich, ich komm nich auf das ergebnis -.-

Bezug
                                                                        
Bezug
Log-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 Mi 21.02.2007
Autor: Teufel

Musst einfach das eingeben was ich davor geschrieben habe! Kannst natürlich auch den Bruch erstma etwas vereinfachen... zu [mm] \bruch{16}{13}. [/mm] Vielleicht kannst du es damit leichter machen.

Bezug
                                                                                
Bezug
Log-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:19 Mi 21.02.2007
Autor: Gerlili

ich danke dir sehr dass du es versucht hast mir zu erklären,aber ich bin ein hoffnungsloser fall bei dieser aufgabe, danke nachmal ;)

Bezug
                                                                                        
Bezug
Log-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:27 Mi 21.02.2007
Autor: Teufel

[mm] x=\bruch{lg2,6}{lg\bruch{3,2}{2,6}} [/mm]

Wenn du hier angelabngt bist, musst du doch nur noch eintippen :) Der einzige Fehler, den ich mir vorstellen könnte, könnte folgender sein:

Du tippst ein:
2,6 LG / 3,2 / 2,6 LG =

Aber dann würde der Taschenrechner rechnen: [mm] \bruch{\bruch{lg2,6}{3,2}}{lg2,6} [/mm]

Wenn du den Bruch eingibst solltest dud as in Klammern setzen, oder direkt [mm] \bruch{16}{3} [/mm]  eingeben, wenn das dein rechner macht. Wennd as nicht der Fehler ist, weiß ich auch nicht ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de