www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Logarithmen
Logarithmen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:35 Di 20.03.2007
Autor: hase-hh

Aufgabe
Berechne

[mm] 6^{2x} -3*6^{x+1} [/mm] =10

moin, moin,

irgendwie scheine ich für logarithmen-aufgaben nicht geeignet zu sein.

ich denke mir, ich müßte die gleichung logarithmieren, aber da scheitere ich schon...

müßte ich  dann nicht

lg ( [mm] 6^{2x} -3*6^{x+1} [/mm] ) = lg 10

bilden.


und nun?


vielen dank für eure hilfe!

gruß
wolfgang




        
Bezug
Logarithmen: wird quadratische Gleichung
Status: (Antwort) fertig Status 
Datum: 12:47 Di 20.03.2007
Autor: Roadrunner

Hallo Wolfgang!


Dein Weg über Logarithmieren funktioniert hier nicht, da wir zwischen den Termen ein Minuszeichen vorliegen haben.


Aber durch Anwendung der MBPotenzgesetze erhalten wir:

[mm] $6^{2x} [/mm] \ = \ [mm] \left(6^x\right)^2$ [/mm]

[mm] $6^{x+1} [/mm] \ = \ [mm] 6^x*6^1 [/mm] \ = \ [mm] 6*6^x$ [/mm]


[mm] $\Rightarrow$ $\left(6^x\right)^2-3*6*6^x [/mm] \ = \ 10$

[mm] $\gdw$ $\left(6^x\right)^2-18*6^x [/mm] -10 \ = \ 0$


Durch die Substitution $u \ := \ [mm] 6^x$ [/mm] erhältst Du dann eine quadratische Gleichung, die Du z.B. mit der MBp/q-Formel lösen kannst:

[mm] $u^2-18*u-10 [/mm] \ = \ 0$


Gruß vom
Roadrunner


Bezug
                
Bezug
Logarithmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:27 Di 20.03.2007
Autor: hase-hh

vielen dank roadrunner!

ja, auf die zerlegung nach den potenzgesetzen war ich auch gekommen, aber fragte mich dann wozu?!

logisch, mit der pq-formel macht das sinn.

gruß
wolfgang

Bezug
                        
Bezug
Logarithmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:43 Di 20.03.2007
Autor: viktory_hh

nur so am Rande, da es in Deutschland meistens nur die p/q Formel gelehrt wird hier fast dasselbe, aber etwas angenehmer im Gebrauch:


[mm] a*x^2+b*x+c=0 [/mm]

--> [mm] x_{1,2}= \bruch{-b \pm \wurzel{b^2-4*a*c}}{2*a} [/mm]

war in der Schule in Physik z.B. für mich sehr hilfreich. Denn es entfällt das nötige Normieren bei der p/q Formel weg. So ging es immer ein Tick schneller als bei den anderen.

Tschao

Bezug
                                
Bezug
Logarithmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:56 Di 20.03.2007
Autor: hase-hh

moin viktor(ia),

ja die mitternachtsformel ist mir auch schon über den Weg gelaufen. finde aber (vielleicht ist das nur gewohnheit) die pq-formel leichter.

gruß
wolfgang

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de