www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Logarithmengleichung
Logarithmengleichung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:14 Fr 28.11.2008
Autor: Sarah288

Hallo zusammen,

ich habe ein Frage zu folgender Aufgabe:

[mm] 2e^x-e^{-2x}=0 [/mm]

Ich müsste jetzt ja mit dem Logarithmus arbeiten, aber wie kann ich den ersten Teil logarithmieren? Den zweiten Teil würde ich auch die andere Seite ziehen und würde durch logarithmieren auf -2x kommen.

Kann mir jemand helfen?

        
Bezug
Logarithmengleichung: umformen
Status: (Antwort) fertig Status 
Datum: 13:17 Fr 28.11.2008
Autor: crashby

Hallo Sarah,

Deine Gleichung heißt ja:

$ [mm] 2e^x-e^{-2x}=0 [/mm] $

forme so um,dass du auf beiden Seiten den log anwenden kannst.

Kommst du damit weiter ?

Bezug
                
Bezug
Logarithmengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:20 Fr 28.11.2008
Autor: Sarah288

Vielen Dank,

meinst du damit, dass ich erst einmal den zweiten Teil der Gleichung auf die andere Seite bringen muss??

Bezug
                        
Bezug
Logarithmengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 Fr 28.11.2008
Autor: fred97


$ [mm] 2e^x-e^{-2x}=0 [/mm] $ [mm] \gdw 2e^x [/mm] = [mm] e^{-2x} [/mm]

Jetzt auf beiden Seiten logarithmieren

FRED

Bezug
                                
Bezug
Logarithmengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:33 Fr 28.11.2008
Autor: Sarah288

Dankeschön,

dann würde ich auf ln 2*x=-2x kommen??

Wenn ich dann durch x dividiere, fällt das x aber weg... wo ist mein denkfehler??

Bezug
                                        
Bezug
Logarithmengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:39 Fr 28.11.2008
Autor: fred97


> Dankeschön,
>  
> dann würde ich auf ln 2*x=-2x kommen??


[mm] ln(2e^x) [/mm] = ln2 + [mm] ln(e^x) [/mm] = ln2 +x [mm] \not= [/mm] ln 2*x

FRED



>  
> Wenn ich dann durch x dividiere, fällt das x aber weg... wo
> ist mein denkfehler??


Bezug
        
Bezug
Logarithmengleichung: Alternative
Status: (Antwort) fertig Status 
Datum: 13:41 Fr 28.11.2008
Autor: Roadrunner

Hallo Sarah!


Ein Alternativweg: multipliziere Deine Gleichung mit [mm] $e^{2x}$ [/mm] und stelle dann nach [mm] $e^{...} [/mm] \ = \ ...$ um.


Gruß vom
Roadrunner


Bezug
        
Bezug
Logarithmengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:54 Fr 28.11.2008
Autor: Marcel08

einige Tipps:


1.) [mm] e^{-2x}=\bruch{1}{e^{2x}} [/mm]

2.1) [mm] ln(\bruch{1}{e^{2x}})=ln(1)-2x=-2x [/mm]

2.) [mm] ln(2*e^{x})=ln(2)+x [/mm]


Gruß,



Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de