www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Logarithmus
Logarithmus < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmus: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:49 So 13.01.2008
Autor: chipbit

Aufgabe
Berechnen Sie folgende Grenzwerte:
[mm] \limes_{n\rightarrow\infty} nlog(1+\bruch{2}{n}) [/mm] ,
[mm] \limes_{y\rightarrow 0} \bruch{1}{y}log(1+y) [/mm]

Hallo,
ich weiß nicht wie ich das mache. Kann man den log irgendwie umschreiben? Muss man das Ganze dann jeweils auseinander nehmen? Oder gibt es da eine bestimmte Formel o.ä. für?

        
Bezug
Logarithmus: zur b)
Status: (Antwort) fertig Status 
Datum: 18:59 So 13.01.2008
Autor: barsch

Hi,

b) [mm] \limes_{y\rightarrow 0} \bruch{1}{y}log(1+y)=\limes_{y\rightarrow 0} \bruch{log(1+y)}{y}=\bruch{"0"}{"0"} [/mm] du kannst also Regel von L'Hospital anwenden.

Bei der a) habe ich folgendes versucht, bin aber nicht weitergekommen. Vielleicht weiß ein anderer damit was anzufangen:

[mm] \limes_{n\rightarrow\infty} nlog(1+\bruch{2}{n})=\limes_{n\rightarrow\infty} nlog(\bruch{n}{n}+\bruch{2}{n})=\limes_{n\rightarrow\infty} nlog(\bruch{n+2}{n})=\limes_{n\rightarrow\infty}n*(log(n+2)-log(n))=\limes_{n\rightarrow\infty}\bruch{log(n+2)-log(n)}{\bruch{1}{n}} [/mm]

Jetzt wäre L'Hospital eine Möglichkeit, aber das haut nicht ganz hin?!

MfG barsch


Bezug
        
Bezug
Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 So 13.01.2008
Autor: schachuzipus

Hallo chipbit,

zu (a):

die Idee von barsch, das Ding umzuformen, um mit de l'Hôpital draufzuhauen, ist schon genau richtig, allerdings würde ich das sofort ohne Umwege so schreiben:

[mm] $n\cdot{}\ln\left(1+\frac{2}{n}\right)=\frac{\ln\left(1+\frac{2}{n}\right)}{\frac{1}{n}}$ [/mm]

Das geht direkt für [mm] $n\to\infty$ [/mm] gegen den unbestimmten Ausdruck [mm] $\frac{0}{0}$ [/mm]

Also ran mit de l'Hôpital, Zähler und Nenner getrennt ableiten:

[mm] $\frac{\left[\ln\left(1+\frac{2}{n}\right)\right]'}{\left[\frac{1}{n}\right]'}=\frac{-\frac{2}{n(n+2)}}{-\frac{1}{n^2}}=\frac{2n^2}{n(n+2)}$ [/mm]

Und das strebt für [mm] $n\to\infty$ [/mm] gegen.....


LG

schachuzipus

Bezug
                
Bezug
Logarithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:44 So 13.01.2008
Autor: chipbit

Sorry, hatte jetzt erst Zeit. Also die erste strebt gegen 2 würd ich sagen.
Mit der anderen beschäftige ich mich dann jetzt noch schnell.

Bezug
                        
Bezug
Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 22:20 So 13.01.2008
Autor: Marcel

Hallo,

bei der ersten kann man sofort ausnutzen, dass [mm] $n*\log(1+\frac{2}{n})=\log\left(1+\frac{2}{n}\right)^n$ [/mm] und dann strebt der Ausdruck in der Klammer gegen [mm] $e^2$ [/mm] bei $n [mm] \to \infty$. [/mm]

Bei der zweiten Aufgabe:
Zwei Fälle:
1.) Betrachte stets $y>0$. Dann setze [mm] $z_1:=\frac{1}{y}$: [/mm]
[mm] $\lim_{y \to 0^{+}} \frac{1}{y}\log(1+y)=\lim_{z_1 \to \infty} \log\left(1+\frac{1}{z_1}\right)^{z_1}$ [/mm]
2.)  Nun sei stets $y<0$. Dann setze [mm] $z_2:=\frac{1}{y}$: [/mm]
[mm] $\lim_{y \to 0^{-}} \frac{1}{y}\log(1+y)=\lim_{z_2 \to -\infty} \log\left(1+\frac{1}{z_2}\right)^{z_2}=\lim_{z_2 \to \infty} \log\left(1-\frac{1}{z_^2}\right)^{-z_2}$ [/mm]

Daraus folgt (da [mm] $\log(.)$ [/mm] stetig):
a) Grenzwert ist [mm] $\log(e^2)=2$ [/mm]
b) Grenzwert ist bei
1.) [mm] $\log(e)=1$ [/mm]
2.) [mm] $\log\left(\frac{1}{\frac{1}{e}}\right)=\log(e)=1$ [/mm]
(Sofern [mm] $\log(.)$ [/mm] der natürliche Logarithmus ist.), also insgesamt $=1$ bei Aufgabe b).

(Wenn [mm] $\log(.)$ [/mm] nicht der natürliche Logarithmus zur Basis $e$ ist, so hat man halt bei a) dann [mm] $\log(e^2)$ [/mm] oder [mm] $2*\log(e)$ [/mm] stehen und bei b) dann [mm] $\log(e)$.) [/mm]

Anmerkung zu 2.):
[mm] $\lim_{z_2 \to \infty} \log\left(1-\frac{1}{z_2}\right)^{-z_2}=\lim_{z_2 \to \infty} \log\left(1+\frac{(-1)}{z_2}\right)^{-z_2}=-\log\left(\lim_{z_2 \to \infty} \left(1+\frac{(-1)}{z_2}\right)^{z_2}\right)=-\log(e^{-1})=\log(e^{-(-1)})=\log(e)=1$ [/mm]

(Wie gesagt, sofern [mm] $\log(.)$ [/mm] der natürliche Logarithmus.)

Gruß,
Marcel

Bezug
                                
Bezug
Logarithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:45 So 13.01.2008
Autor: chipbit

ah okay, danke für die Hilfe :)

Bezug
        
Bezug
Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 So 13.01.2008
Autor: Teufel

Hallo!

[mm] \limes_{n\rightarrow\infty} nlog(1+\bruch{2}{n}) [/mm]
[mm] =\limes_{n\rightarrow\infty} log((1+\bruch{2}{n})^n) [/mm]
=log(e²)

[mm] \limes_{y\rightarrow 0} \bruch{1}{y}log(1+y) [/mm]
[mm] =\limes_{y\rightarrow 0} log((1+y)^{\bruch{1}{y}}) [/mm]
[mm] =\limes_{n\rightarrow \infty} log((1+\bruch{1}{n})^n) [/mm]
=log(e)

Oder täusche ich mich?

Bezug
                
Bezug
Logarithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:46 So 13.01.2008
Autor: chipbit

auch an dich ein dickes Dankeschön :)

Bezug
                
Bezug
Logarithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:47 So 13.01.2008
Autor: Marcel

Hi,

nein, das ist im Wesentlichen okay so. Nur bei der zweiten Rechnung müsstest Du eigentlich die Existenz von [mm] $\lim_{y \to 0} \frac{1}{y} \log(1+y)$ [/mm] erstmal begründen, um dann sagen zu können, dass du o.E. hier [mm] $y=y_n=\frac{1}{n}$ [/mm] wählen kannst (und dass Du danach dann [mm] $y_n \to [/mm] 0 [mm] \gdw [/mm] n [mm] \to \infty$ [/mm] hast, ist klar).

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de