www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Logarithmus
Logarithmus < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:51 Fr 05.03.2010
Autor: mitex

Aufgabe 1
lg(500)=

mögliche Antworten: lg(5)+10, lg(5)+2, lg(10)+5

Aufgabe 2
lg(10)=

Grüß euch,
meine Nichte ist mit einem Mathe-Übungsblatt zu mir gekommen, hier weiß ich aber überhaupt nicht um was es geht. Sitze seit gestern mehr oder weniger vor meinen "alten" Mathebüchern und werde nicht wirklich schlau daraus.

Die anderen Beispiele waren in die Richtung:
Verwandle folgende Logarithmengleichung in eine Potenzgleich: [mm] log_{3}81=4 [/mm] oder umgekehrt [mm] 2^{6}=64 [/mm]
oder [mm] log_{4}(\bruch{1}{2})= [/mm]
das war nach ein wenig nachlesen ja relativ schnell wieder da.
Aber bei obigen zwei Aufgaben kann ich ihr gar nichts sagen.
Bin euch dankbar für einen Denkanstoß oder Erklärung.

Gruß, mitex

PS: Habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Fr 05.03.2010
Autor: fencheltee


> lg(500)=
>  
> mögliche Antworten: lg(5)+10, lg(5)+2, lg(10)+5
>  lg(10)=
>  Grüß euch,

hallo!

> meine Nichte ist mit einem Mathe-Übungsblatt zu mir
> gekommen, hier weiß ich aber überhaupt nicht um was es
> geht. Sitze seit gestern mehr oder weniger vor meinen
> "alten" Mathebüchern und werde nicht wirklich schlau
> daraus.
>
> Die anderen Beispiele waren in die Richtung:
> Verwandle folgende Logarithmengleichung in eine
> Potenzgleich: [mm]log_{3}81=4[/mm] oder umgekehrt [mm]2^{6}=64[/mm]
>  oder [mm]log_{4}(\bruch{1}{2})=[/mm]
>  das war nach ein wenig nachlesen ja relativ schnell wieder
> da.
>  Aber bei obigen zwei Aufgaben kann ich ihr gar nichts
> sagen.
>  Bin euch dankbar für einen Denkanstoß oder Erklärung.

also log(500) kann man ja schreiben als log(5*100).
dann gibt es eine regel:
[mm] \log_a [/mm] (x [mm] \cdot [/mm] y) = [mm] \log_a [/mm] x + [mm] \log_a [/mm] y
hier in unserer aufgabe ist das a=10 (also logarithmus zur basis 10, und wird deshalb weggelassen)
nun nach anwendung dieser regel haben wir dann
log(5)+log(100)
und nun noch verkürzen: log(100) heisst quasi wörtlich "mit welcher zahl muss ich die basis (hier ja a=10) potenzieren um auf 100 zu kommen", und somit ist log(100)=2.
[mm] (10^2=100), [/mm] oder einfach in den Taschenrechner eintippen
die lösung somit: log(5)+2

den log(10) kann man direkt dann ablesen => 1, da [mm] 10^1 [/mm] =10

>  
> Gruß, mitex
>  
> PS: Habe diese Frage in keinem anderen Forum gestellt.

gruß tee

Bezug
                
Bezug
Logarithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:32 Fr 05.03.2010
Autor: mitex

Hey tee,

das ging ja prompt, das schaut jetzt gut aus, so kann ich etwas damit anfangen und in weiterer Folge hoffentlich auch meine Nichte.

Herzlichen Dank, mitex


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de