www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Logarithmus
Logarithmus < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmus: aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:22 Do 11.03.2010
Autor: manolya

Aufgabe
Berechnung der Aufgabe

Hallo alle zusammen :),

also ein Kapital von 5000€  wird mit einem jährlichen Zinssatz von 3,5% verzinst.

a)
So nun muss ich beweisen, dass das Wachstum des Kapitals durch die folgende Exponentialfunktion K(t)= 5000* [mm] 1,035^t [/mm] beschrieben werden kann.
--> Kann mir Jemand einen guten Tipp geben:)


b) Nach welcher zeit habe sich ds Kapital verdoppelt( da muss ich 10 000= [mm] 5000*1,035^t [/mm]   aber soll ich zunächst mal Logarithmieren?)


        
Bezug
Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 Do 11.03.2010
Autor: leduart

Hallo
Da das Kapital pro Jahr um den Faktor 1.035 wächst, wächst es in t Jahren um [mm] 1.035^t. [/mm] dabei muss klar sein, dass man t in Jahren rechnet (eigentlich muss da statt t t/(1y) stehen.
ich würde vor dem log. durch 5000 teilen.
Gruss leduart

Bezug
        
Bezug
Logarithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:40 Do 11.03.2010
Autor: manolya

Hallo:)


Also ich verstehe leider diese mUsteraufgabe nicht und wäre Euch dankbar, wenn ihr mir dies erklären könntet:)

Ich muss den Schnittpunkt ermitteln:

[mm] f(x)=4*1,2^x [/mm]
[mm] g(x)=2*1,5^x [/mm]

f(x)=g(x)=
[mm] 4*1,2^x=2*1,5^x [/mm]
[mm] log(4*1,2^x)=log(2*1,5^x) [/mm]
log4+x*log1,2=log2+x*log1,5  <--warum wird das aufeinmal +
x*(log1,5-log1,2)=log4-log2  <-- ..und das -?????
x=3,11


Danke im Voraus für eure Bemühungen:)

Gruß

Bezug
                
Bezug
Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Do 11.03.2010
Autor: schachuzipus

Hallo manolya,

du weißt doch: für neue Aufgaben einen neuen thread eröffnen !!!!!!!!!!!!!

> Hallo:)
>
>
> Also ich verstehe leider diese mUsteraufgabe nicht und
> wäre Euch dankbar, wenn ihr mir dies erklären könntet:)
>  
> Ich muss den Schnittpunkt ermitteln:
>  
> [mm]f(x)=4*1,2^x[/mm]
> [mm]g(x)=2*1,5^x[/mm]
>  
> f(x)=g(x)=
>  [mm]4*1,2^x=2*1,5^x[/mm]
>  [mm]log(4*1,2^x)=log(2*1,5^x)[/mm]
>  log4+x*log1,2=log2+x*log1,5  <--warum wird das aufeinmal  +

Du solltest dir schleunigst die Logarithmusgesetze ansehen!

Sonst wird das nix ...

Es ist [mm] $\log_c(a\cdot{}b)=\log_c(a)+\log_c(b)$ [/mm]

Hier also für die rechte Seite [mm] $\log(2\cdot{}1,5^x)=\log(2)+\log(1,5^x)$ [/mm]

Und weiter mit dem Gesetz [mm] $\log_c(a^b)=b\cdot{}\log_c(a)$ [/mm] ...

>  x*(log1,5-log1,2)=log4-log2  <-- ..und das -?????

Na, die obige Gleichung umstellen, alles mit x nach rechts, alles ohne x nach links (und dann noch die Seiten vertauschen: [mm] $a=b\gdw [/mm] b=a$), daher die "-"

>  x=3,11
>  
>
> Danke im Voraus für eure Bemühungen:)
>  
> Gruß

LG

schachuzipus

Bezug
                        
Bezug
Logarithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:55 Do 11.03.2010
Autor: manolya

aa> Hallo manolya,
>  
> du weißt doch: für neue Aufgaben einen neuen thread
> eröffnen !!!!!!!!!!!!!

Ja ich dachte, dass das si emeint war mit dem neune Tread öffnen. Tut mir leid . Werde das in Zukunft machen.

>  
> Du solltest dir schleunigst die Logarithmusgesetze
> ansehen!
>  
> Sonst wird das nix ...

Tut mir leid, dass ich andauernd fragen muss. Ich habe dieses Thema seit zwei Tagen.

GRUß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de