www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Logarithmus - Gleichung
Logarithmus - Gleichung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmus - Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:46 Fr 02.06.2006
Autor: der.mister

Aufgabe
Nach der Gleichung [mm] (*)log_{b}(y) [/mm] = [mm] \bruch{log_{a}(y)}{log_{a}(b)} [/mm] kann die Umrechnung von (bekannten) Logarithmen zur Basis a in Logarithmen zur Basis b erfolgen (y  [mm] \in \IR*_{+} [/mm] und a, b [mm] \in \IR*_{+} \setminus \{1 \} [/mm]

a) Begründen Sie zunächst warum der Quotient auf der rechten Seite dieser Gleichung stets definiert ist; d. h., begründen Sie , dass [mm] log_{a}(b)\not=0 [/mm] sein muss.

b) Beweisen Sie die Gleichung (*).

c) Wie vereinfacht sich Gleichung (*), wenn y = a ist?

d) Mit a 0 10 lautet (*): [mm] log_{b}(y) [/mm] =  [mm] \bruch{lg(y)}{lg(b)}, [/mm] wobei die dekadischen Logarithmen lg(y) und lg(b) einer Logarithmentafel bzw. einem Taschenrechner entnommen werden können.
Berechnen Sie auf diesem Weg [mm] log_{31}(172,6) [/mm]

Hy!
Ich stehe bei dieser Aufgabe ziemlich auf dem Schlauch..
Hier meine ersten Versuche:

zu a):
[mm] log_{a}(b) [/mm] wäre theoretisch nur dann gleich 0, wenn b=1 wäre.
Dies ist durch die Voraussetzung aber nicht möglich.

zu b):
Die Beziehung y=b* müsste gleichbedeutend sein mit: x= [mm] log_{b}(y). [/mm]

Ergibt dann:
[mm] log_{a}(y) [/mm] = [mm] x^{*}log_{a}(b) [/mm] = [mm] log_{b}(y)^{*}log_{a}(b)\gdw log_{b}(y) [/mm] = [mm] \bruch{log_{a}(y)}{log_{a}(b)} [/mm]

Weiter komme ich nicht.
Danke für Eure Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Logarithmus - Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Sa 03.06.2006
Autor: Martin243

Hallo,

1.
Ja genau, der Definitionsbereich stellt sicher, dass der Nenner des Bruchs nie Null wird.


2.
Wir wissen, dass aus [mm] a^{b} [/mm] = [mm] a^{b'} [/mm] automatisch b = b' folgt (Kennst du den Begriff "injektiv"? Wenn nicht, dann sieht man am Verlauf des Graphen, dass es zu jeder Funktionswert nur einmal vorkommt.)
Also rechnen wir:
[mm] e^{\ln b * log_{b} y} [/mm] = [mm] (e^{\ln b})^{log_{b} y} [/mm]  (Potenzgesetz)
= [mm] b^{log_{b} y} (e^{\ln b} [/mm] ergibt gerade b)
= y  (dasselbe mit Basis b)
= [mm] e^{\ln y} [/mm]


3.
Einsetzen (einfach mal ausprobieren!!!) ergibt:
[mm] log_{b} [/mm] a =  [mm] \bruch{log_{a} a}{log_{a} b} [/mm] = [mm] \bruch{1}{log_{a} b} [/mm]


4.
Einfach nur ausrechnen:
[mm] \lg [/mm] 172,6 / [mm] \lg [/mm] 31 = ??


Gruß
Martin

Bezug
                
Bezug
Logarithmus - Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:00 Sa 03.06.2006
Autor: der.mister

Danke Dir!!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de