www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Logarithmusgleichung
Logarithmusgleichung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmusgleichung: Hilfe, ich komm nicht weiter
Status: (Frage) beantwortet Status 
Datum: 15:30 So 15.01.2012
Autor: shedoesntunderstand

Aufgabe
[mm] 5*2^x=3*2^{2x-1} [/mm]

und

4*3^(x+1)=8*9^(1-2x)


ich löse die gleichung mit dem Logarithmus:

1. lg5+xlg2=lg3+2xlg2-lg2

2. lg5-xlg2=lg3-lg2

3. -xlg2=lg3-lg2-lg5

4. -x=(lg3-lg2-lg5)/lg2

Irgendwie komm ich da nicht weiter, ist das dann das gesuchte x?? Im Lösungsbuch steht: L=[(l-lg3)/lg2)]. Wie komm ich da drauf?

Und für die zweite Gleichung hab ich:

1. lg4+(x+1)lg3=lg8+(1-2x)lg9

2. lg4+xlg3+lg3=lg8+lg9-2xlg9

jetzt komm ich schon nicht mehr weiter... Es soll x=(lg6/5lg3) rauskommen.

Danke für die Hilfe!!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Logarithmusgleichung: zu Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 15:36 So 15.01.2012
Autor: Loddar

Hallo shedoesntunterstand,

[willkommenmr] !!


> 1. lg5+xlg2=lg3+2xlg2-lg2
>  
> 2. lg5-xlg2=lg3-lg2
>  
> 3. -xlg2=lg3-lg2-lg5
>  
> 4. -x=(lg3-lg2-lg5)/lg2

Da hat sich aber auch ein Fehler in das Lösungsbuch eingeschlichen. Das muss am Ende heißen:

$x \ = \ [mm] \bruch{\lg\left(\bruch{5}{3}\right)}{\lg(2)}+1 [/mm] \ = \ [mm] \bruch{\lg(5)-\lg(3)}{\lg(2)}+1$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Logarithmusgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:42 So 15.01.2012
Autor: shedoesntunderstand

Und woher kommt die 1?

danke für die schnelle Antwort!

Bezug
                        
Bezug
Logarithmusgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 So 15.01.2012
Autor: MathePower

Hallo shedoesntunderstand,

> Und woher kommt die 1?
>  
> danke für die schnelle Antwort!


Statt der "1" im Zähler muss dort "lg(2)" stehen.

Dann stimmt auch die Lösung.


Gruss
MathePower

Bezug
                        
Bezug
Logarithmusgleichung: Tippfehler
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:11 So 15.01.2012
Autor: Loddar

Hallo!


> Und woher kommt die 1?

Da ist mir die 1 leider in den Zähler gerutsch, sorry.

Ist oben nunmehr korrigiert.


Gruß
Loddar


Bezug
        
Bezug
Logarithmusgleichung: zu Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 17:10 So 15.01.2012
Autor: Loddar

Hallo!


> 4*3^(x+1)=8*9^(1-2x)

Am einfachsten wäre es, zunächst durch $4_$ zu dividieren.
Zudem gilt $9 \ = \ [mm] 3^2$ [/mm] ; und somit auch: [mm] $9^{1-2x} [/mm] \ = \ [mm] 3^{2*(1-2x)} [/mm] \ = \ [mm] 3^{2-4x}$ [/mm]

Dann kann man die Gleichung durch [mm] $3^{2-4x}$ [/mm] teilen.


> 1. lg4+(x+1)lg3=lg8+(1-2x)lg9
>  
> 2. lg4+xlg3+lg3=lg8+lg9-2xlg9

Zu Deinem Weg: bringe nun alle Terme mit $x_$ auf eine Seite der Gleichung und den Rest auf die andere Seite.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de