www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Aussagenlogik" - Logische Äquivalenz
Logische Äquivalenz < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logische Äquivalenz: Korrektur, Tipps
Status: (Frage) überfällig Status 
Datum: 16:11 Sa 05.07.2014
Autor: ne1

Aufgabe
Beweise:
Sind $A$ und $B$ Sätze der Aussagenlogik, dann gilt $A [mm] \vDash [/mm] =| B$ genau dann, wenn [mm] $\vDash [/mm] A [mm] \leftrightarrow B$. (Dashv - "=|" funktioniert nicht mit Latex) Hallo, Definition: Zwei Sätze $A$ und $B$ heißen genau dann logisch äquivalent ($A \vDash =| B$), wenn sich allein aus den Bedingungen der Definiton X (ist erstmal nicht so wichtig) ergibt, dass für alle Bewertungen $V$ gilt: $A$ ist genau dann wahr bzgl. $V$, wenn $B$ wahr ist bzgl. $V$. Der Ausdruck "genau dann" bereitet mir Schwierigkeiten. Natürlich kann ich mir diesen Ausdruck auf folgenden Junktor - $\leftrightarrow$ zurückführen. Ich muss aber vorher wissen, warum ich das tun kann. Anders gesagt, es wird über die Aussagenlogik gesprochen, es werden Definitionen vorgelegt, die solche Ausdrücke enthalten, wo aber nicht gesagt würde, was diese Ausdrücke heißen. Es scheint so als wären diese Ausdrücke unabhängig von der Aussagenlogik. Man sieht aber irgendwie, dass sie einen gewissen logischen Aspekt haben. Wenn ich das richtig sehe, habe ich einen Satz in der deutschen Sprache (Metasprache), den ich beweisen muss. Ich kann also den Ausdruck, "genau dann" als $\leftrightarrow$ betrachten und den deutschen Satz teilweise in die Objektsprache, die Aussagenlogik übersetzen. Beweisen, heißt also zeigen, dass dieser Satz logisch wahr ist. D.h. ich muss zeigen: $\vDash (A \vDash =| B \leftrightarrow \vDash A \leftrightarrow B)$. Anders ausgedruckt, ich muss also zeigen, dass $A \vDash =| B \leftrightarrow \vDash A \leftrightarrow B$ eine Tautologie ist, d.h. ich kann eine Wahrheitstafel nutzen. Ich muss also erstmal die Frage beantworten können, wann sind 1) $A \vDash =| B$ und 2) $ \vDash A \leftrightarrow B$ wahr (bzgl. einer Bewertung $V$). 1) Ich nutze die obige Definition und stelle fest, dass $A \vDash =| B$ wahr bzgl $V$, wenn entweder beide wahr sind bzgl. $V$ oder beide falsch sind bzgl. $V$, denn nach der Definition ist: $A$ ist genau dann wahr bzgl. $V$, wenn $B$ wahr ist bzgl. $V$. Und ich betrachte den Ausdruck "genau dann" als $\leftrightarrow$ und mache eine Wahrheitstafel. 2) Hier reicht es ne Wahrheitstafel für $A \leftrightarrow B$ zu machen und man stellt fest, dass der Satz eine Tautologie ist in den selben Fällen wir bei 1). Da 1) und 2) für die selben Bewertungen von $A$ und $B$ wahr bzw. falsch sind, heißt es für $\leftrightarrow$ der ganzen Aufgabe, dass es sich um eine Tautologie handelt. Sind meine Überlegungen formal richtig? [/mm]
        
Bezug
Logische Äquivalenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Di 05.08.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de