www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Logistisches Wachstum - Modell
Logistisches Wachstum - Modell < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logistisches Wachstum - Modell: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 So 11.03.2012
Autor: Mathics

Aufgabe
Der Weltenegergieverbrauch pro Jahr kann wie folgt dargestellt werden:

Jahr : Verbrauch
1960 : 4,66
1970 : 7,866
1980 : 10,416
1990 : 12,636
1996 : 13,515
2003 : 15,20

Geben Sie einen geeigneten Funktionsterm an. Begründen Sie die Wahl des von Ihnen verwendeten Modells.


Hallo,

ich würde hier das logistische Wachstum nehmen. Denn man sieht ja, dass der Graph anfangs nahezu exponentiell und nach dem Wendepunkt gegen einen Grenzwert S anwächst.  Will man die Wachstumsgeschwindigkeit einheitlich beschreiben, so liegt es nahe, eine Proportionalität zu dem Produkt von f(t) und S-f(t) anzunehmen. Ein Wachstum mit dieser Eigenschaft ist das logistische Wachstum.

Beim begrenzten Wachstum ist dagegen die Änderungsrate stets proportional zur Differenz aus Sättigungsgrenze S und aktuellem Bestand. Besonders zu Beginn entspricht die Kurve nicht den Werten.


Ist das so richtig und vollständig?

        
Bezug
Logistisches Wachstum - Modell: Antwort
Status: (Antwort) fertig Status 
Datum: 22:36 So 11.03.2012
Autor: Martinius

Hallo mathics,


> Der Weltenegergieverbrauch pro Jahr kann wie folgt
> dargestellt werden:
>  
> Jahr : Verbrauch
>  1960 : 4,66
>  1970 : 7,866
>  1980 : 10,416
>  1990 : 12,636
>  1996 : 13,515
>  2003 : 15,20




Könntest Du uns bitte noch die Einheiten nennen - für den Energieverbrauch.



  

> Geben Sie einen geeigneten Funktionsterm an. Begründen Sie
> die Wahl des von Ihnen verwendeten Modells.
>  
> Hallo,
>  
> ich würde hier das logistische Wachstum nehmen. Denn man
> sieht ja, dass der Graph anfangs nahezu exponentiell und
> nach dem Wendepunkt gegen einen Grenzwert S anwächst.  
> Will man die Wachstumsgeschwindigkeit einheitlich
> beschreiben, so liegt es nahe, eine Proportionalität zu
> dem Produkt von f(t) und S-f(t) anzunehmen. Ein Wachstum
> mit dieser Eigenschaft ist das logistische Wachstum.
>  
> Beim begrenzten Wachstum ist dagegen die Änderungsrate
> stets proportional zur Differenz aus Sättigungsgrenze S
> und aktuellem Bestand. Besonders zu Beginn entspricht die
> Kurve nicht den Werten.
>  
>
> Ist das so richtig und vollständig?


Ja, das kann man so stehen lassen.

Ich habe mir die Residuen Deiner Daten / Regressionsfunktion einmal angesehen; das ist so in Ordnung.

Allerdings wächst die Weltbevölkerung derzeit hyperlogistisch - und ich vermute, dass der Energieverbrauch folgen dürfte.

LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de