www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Lokale Extrema mit ln
Lokale Extrema mit ln < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lokale Extrema mit ln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:02 Mo 22.02.2010
Autor: einsteinser

Aufgabe
[mm] f_t(x)=(lnx-2t)\cdot lnx [/mm] mit [mm] x \in \IR^+ [/mm]
Untersuchen sie die Funktion auf lokale Extrema

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
wenn ich die 1. Ableitung der Funktion mache, komme ich auf
[mm] 1/x(lnx)+(lnx-2t)1/x=[/mm]
[mm] 1/x(2lnx-2t) [/mm]
Aber wie bekomme ich das auf 0 (oder stimmt meine Ableitung nicht ?)

Danke für eure Hilfe.
Gruss
Marcel

        
Bezug
Lokale Extrema mit ln: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Mo 22.02.2010
Autor: schachuzipus

Hallo Marcel,

> [mm]f_t(x)=(lnx-2t)\cdot lnx[/mm] mit [mm]x \in \IR^+[/mm]
> Untersuchen sie die Funktion auf lokale Extrema
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
> Hallo,
>  wenn ich die 1. Ableitung der Funktion mache, komme ich
> auf
>  [mm]1/x(lnx)+(lnx-2t)1/x=[/mm]
>  [mm]1/x(2lnx-2t)[/mm] [ok]
>  Aber wie bekomme ich das auf 0 (oder stimmt meine
> Ableitung nicht ?)

doch, doch.

Du weißt sicher, dass ein Produkt genau dann =0 ist, wenn (mindestend) einer der Faktoren =0 ist, also

[mm] $\frac{1}{x}\cdot{}\left[2\ln(x)-2t\right]=0 [/mm] \ [mm] \gdw [/mm] \ [mm] \frac{1}{x}=0 [/mm] \ [mm] \text{oder} [/mm] \ [mm] 2\ln(x)-2t=0$ [/mm]

[mm] $\frac{1}{x}$ [/mm] ist stets [mm] $\neq [/mm] 0$, also muss [mm] $2\ln(x)-2t=0$ [/mm] sein ...

Daraus errechne mal $x$

>  
> Danke für eure Hilfe.
>  Gruss
>  Marcel

LG

schachuzipus

Bezug
                
Bezug
Lokale Extrema mit ln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:16 Mo 22.02.2010
Autor: einsteinser


> Hallo Marcel,
>  
> > [mm]f_t(x)=(lnx-2t)\cdot lnx[/mm] mit [mm]x \in \IR^+[/mm]
> > Untersuchen sie die Funktion auf lokale Extrema
>  >  Ich habe diese Frage in keinem Forum auf anderen
> > Internetseiten gestellt.
> > Hallo,
>  >  wenn ich die 1. Ableitung der Funktion mache, komme ich
> > auf
>  >  [mm]1/x(lnx)+(lnx-2t)1/x=[/mm]
>  >  [mm]1/x(2lnx-2t)[/mm] [ok]
>  >  Aber wie bekomme ich das auf 0 (oder stimmt meine
> > Ableitung nicht ?)
>  
> doch, doch.
>  
> Du weißt sicher, dass ein Produkt genau dann =0 ist, wenn
> (mindestend) einer der Faktoren =0 ist, also
>  
> [mm]\frac{1}{x}\cdot{}\left[2\ln(x)-2t\right]=0 \ \gdw \ \frac{1}{x}=0 \ \text{oder} \ 2\ln(x)-2t=0[/mm]
>  
> [mm]\frac{1}{x}[/mm] ist stets [mm]\neq 0[/mm], also muss [mm]2\ln(x)-2t=0[/mm] sein
> ...
>  
> Daraus errechne mal [mm]x[/mm]
>  
> >  

> > Danke für eure Hilfe.
>  >  Gruss
>  >  Marcel
>
> LG
>  

Hallo Schachuzipus
danke für die schnelle Hilfe !
Also, dann bleibt übrig [mm] ln(x)-t=0 [/mm], also muss [mm] ln(x)=t [/mm] sein ?
Ähh, ich steh grad auf dem Schlauch ..

Bezug
                        
Bezug
Lokale Extrema mit ln: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Mo 22.02.2010
Autor: schachuzipus

Hallo nochmal,

> Hallo Schachuzipus
> danke für die schnelle Hilfe !
>  Also, dann bleibt übrig [mm]ln(x)-t=0 [/mm], also muss [mm]ln(x)=t[/mm] [ok]

Ja, also $x= ...$

denke mal an die e-Funktion ...

> sein ?
>  Ähh, ich steh grad auf dem Schlauch ..

Mach einen Schritt nach vorne, runter von dem Teil, das hält nur auf ;-)

Gruß

schachuzipus

Bezug
                                
Bezug
Lokale Extrema mit ln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Mo 22.02.2010
Autor: einsteinser


> Hallo nochmal,
>  
> > Hallo Schachuzipus
> > danke für die schnelle Hilfe !
>  >  Also, dann bleibt übrig [mm]ln(x)-t=0 [/mm], also muss [mm]ln(x)=t[/mm]
> [ok]
>  
> Ja, also [mm]x= ...[/mm]
>  
> denke mal an die e-Funktion ...
>  
> > sein ?
>  >  Ähh, ich steh grad auf dem Schlauch ..
>
> Mach einen Schritt nach vorne, runter von dem Teil, das
> hält nur auf ;-)

Wenn das so einfach wär ;-)

also [mm] ln(x)-t=0 [/mm]
[mm] e(ln(x)-t)=e \cdot 0 [/mm]
[mm] x-et =0 [/mm] ??
x=et ??
oh mein Gott, ich komm nicht runter vom Schlauch


Bezug
                                        
Bezug
Lokale Extrema mit ln: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 Mo 22.02.2010
Autor: steppenhahn

Hallo,

> also [mm]ln(x)-t=0[/mm]
>  [mm]e(ln(x)-t)=e \cdot 0[/mm]
>  [mm]x-et =0[/mm] ??
> x=et ??
>  oh mein Gott, ich komm nicht runter vom Schlauch

;-)
Die e-Funktion ist die Umkehrfunktion des Logarithmus naturalis.
Das bedeutet:

[mm] $e^{\ln(x)} [/mm] = x$

bzw.

[mm] $\ln(e^{x}) [/mm] = x$

Wenn du nun also da stehen hast:

[mm] $\ln(x)-t [/mm] = 0$,

dann solltest du zuerst das t auf die andere Seite bringen:

[mm] $\ln(x) [/mm] = t$

und nun weißt du: wenn du auf beiden Seiten "e hoch" nimmst, also die Exponentialfunktion [mm] $e^{(...)}$ [/mm] anwendest, wird links wieder "x" draus:

[mm] $e^{\ln(x)} [/mm] = [mm] e^{t}$ [/mm]

$x = [mm] e^{t}$ [/mm]

Grüße,
Stefan

Bezug
                                                
Bezug
Lokale Extrema mit ln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:42 Mo 22.02.2010
Autor: einsteinser


> Hallo,
>  
> > also [mm]ln(x)-t=0[/mm]
>  >  [mm]e(ln(x)-t)=e \cdot 0[/mm]
>  >  [mm]x-et =0[/mm] ??
> > x=et ??
>  >  oh mein Gott, ich komm nicht runter vom Schlauch
>
> ;-)
>  Die e-Funktion ist die Umkehrfunktion des Logarithmus
> naturalis.
>  Das bedeutet:
>  
> [mm]e^{\ln(x)} = x[/mm]
>  
> bzw.
>  
> [mm]\ln(e^{x}) = x[/mm]
>  
> Wenn du nun also da stehen hast:
>  
> [mm]\ln(x)-t = 0[/mm],
>  
> dann solltest du zuerst das t auf die andere Seite
> bringen:
>  
> [mm]\ln(x) = t[/mm]
>  
> und nun weißt du: wenn du auf beiden Seiten "e hoch"
> nimmst, also die Exponentialfunktion [mm]e^{(...)}[/mm] anwendest,
> wird links wieder "x" draus:
>  
> [mm]e^{\ln(x)} = e^{t}[/mm]
>  
> [mm]x = e^{t}[/mm]
>  
> Grüße,
>  Stefan

Hallo Stefan, vielen Dank für die tolle Erklärung !
Jetzt hab ich es verstanden.

Vielen Dank auch Schachuzipus !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de