www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Lotto: Kleinste Gewinnzahl
Lotto: Kleinste Gewinnzahl < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lotto: Kleinste Gewinnzahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:05 Di 10.11.2009
Autor: julekk

Aufgabe
3. Lotto 6 aus 49: Bestimmen Sie die Wahrscheinlichkeit für das Ereignis
(a) k Richtige"
(b) k ist Gewinnzahl"
(c) k ist kleinste Gewinnzahl"
(d) k ist größte Gewinnzahl"
(e) k Gewinnzahlen sind gerade"

Hallo ihr!

Ich bräuchte leider ein bisschen Hilfe zu obiger Aufgabenstellung.

a)
"k Richtige" ist klar, das wurde ja im Forum auch schon diskutiert.

b)
Ich habe mal einen Baum gemalt und komme dann auf [mm] P=\bruch{6}{49}. [/mm]

c)
Finde ich schwierig: Ich denke mir dazu Folgendes:

P(2. gezogene Zahl > [mm] k)=\bruch{49-k}{48} [/mm]
P(3. gezogene Zahl > [mm] k)=\bruch{48-k}{47} [/mm]
...
P(6. gezogene Zahl > [mm] k)=\bruch{45-k}{44} [/mm]

P(k überhaupt Gewinnzahl)=wie in Teil b)

P(k [mm] \le 44)=\bruch{44}{49} [/mm]     (sonst gäbe es ja keine 6 größeren Zahlen)

Das spielt da doch alles eine Rolle, oder? Was ist falsch oder überflüssig?
Mein Plan war jetzt, diese W-keiten zu multiplizieren, hab aber ein ungutes Gefühl dabei... :-)

d)
Hier hab ich mir dann natürlich äquivalent überlegt, dass
P(2. [mm] Zahl
e)
Macht das Sinn:
[mm] P=\bruch{\vektor{24 (gerade Zahlen)\\ k}* \vektor{25 (ungerade Zahlen) \\ 6-k}}{\vektor{49 \\ 6}} [/mm]


Schon mal vorab vielen Dank für eure Antworten!

Liebe Grüße, julekk

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Lotto: Kleinste Gewinnzahl: Frage (c)
Status: (Antwort) fertig Status 
Datum: 20:48 Di 10.11.2009
Autor: Al-Chwarizmi


> 3. Lotto 6 aus 49: Bestimmen Sie die Wahrscheinlichkeit
> für das Ereignis
> .....
>  (c) k ist kleinste Gewinnzahl"
> .....


Hallo julekk,

ich würde für (c) nicht mit Baum und Pfadwahr-
scheinlichkeiten rechnen, sondern mit Kombina-
torik.

Bei der Ziehung des Lottos "6 aus 49" (ohne
Berücksichtigung der Reihenfolge) gibt es im
Ganzen  [mm] \pmat{49\\6} [/mm]  Möglichkeiten. Bei jenen Ziehun-
gen mit k als kleinster gezogener Zahl muss k
zwangsläufig dabei sein und ausserdem 5 weitere,
die alle größer als k sind. Es gibt genau (49-k)
Zahlen, die größer als k sind. Daraus kann man
auf  [mm] \pmat{49-k\\5} [/mm]  Arten 5 Zahlen (ebenfalls ohne
Berücksichtigung der Reihenfolge) ziehen. Also ist

      $\ P(k\ ist\ kleinste\ Gewinnzahl)\ =\ [mm] \frac{\pmat{49-k\\5}}{\pmat{49\\6}}$ [/mm]


Gruß    Al-Chw.



Bezug
        
Bezug
Lotto: Kleinste Gewinnzahl: Antwort
Status: (Antwort) fertig Status 
Datum: 03:15 Mi 11.11.2009
Autor: felixf

Hallo!

> 3. Lotto 6 aus 49: Bestimmen Sie die Wahrscheinlichkeit
> für das Ereignis
>  (a) k Richtige"
>  (b) k ist Gewinnzahl"
>  (c) k ist kleinste Gewinnzahl"
>  (d) k ist größte Gewinnzahl"
>  (e) k Gewinnzahlen sind gerade"

Bei (e) hab ich eine Frage, was ist da gemeint? Dass es genau $k$ gerade Gewinnzahlen gibt, oder mindestens $k$ gerade Gewinnzahlen?

>  Hallo ihr!
>  
> Ich bräuchte leider ein bisschen Hilfe zu obiger
> Aufgabenstellung.
>  
> a)
> "k Richtige" ist klar, das wurde ja im Forum auch schon
> diskutiert.
>  
> b)
> Ich habe mal einen Baum gemalt und komme dann auf
> [mm]P=\bruch{6}{49}.[/mm]

[ok]

> c)

Das hat Al ja schon besprochen.

> d)
>  Hier hab ich mir dann natürlich äquivalent überlegt,
> dass
>  P(2. [mm]Zahl
> [mm]Zahl

Was genau willst du damit sagen?

Machen wir das doch mal kombinatorisch. Insgesamt gibt es ja [mm] $\binom{49}{6}$ [/mm] Moeglichkeiten.

Die groesste Gewinnzahl soll nun $k$ sein, womit $k$ auf jeden Fall eine Gewinnzahl ist, und die anderen 5 Gewinnzahlen kleiner als $k$ sein muessen. Die restlichen Gewinnzahlen kannst du also aus der Menge [mm] $\{ 1, \dots, k - 1 \}$ [/mm] waehlen, du hast also [mm] $\binom{k - 1}{5}$ [/mm] Moeglichkeiten.

> e)
>  Macht das Sinn:
>  [mm]P=\bruch{\vektor{24 (gerade Zahlen)\\ k}* \vektor{25 (ungerade Zahlen) \\ 6-k}}{\vektor{49 \\ 6}}[/mm]

Falls genau $k$ gerade Gewinnzahlen gesucht sind, ist deine Loesung richtig. Falls es mindestens $k$ gerade sein sollen, fehlt noch was.

LG Felix


Bezug
                
Bezug
Lotto: Kleinste Gewinnzahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:46 Mi 11.11.2009
Autor: julekk

Hey,

erstmal danke für die Antworten und super Erklärungen- leuchtet mir ein. Bin schlecht in Kombinatorik, deshalb versuch ich das immer zu meiden :-)

Zu (e)
Hier ist gemeint "genau" k gerade Gewinnzahlen.

LG, julekk

Bezug
                        
Bezug
Lotto: Kleinste Gewinnzahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:05 Mi 11.11.2009
Autor: felixf

Hallo julekk!

> erstmal danke für die Antworten und super Erklärungen-
> leuchtet mir ein. Bin schlecht in Kombinatorik, deshalb
> versuch ich das immer zu meiden :-)

Ok :)

> Zu (e)
>  Hier ist gemeint "genau" k gerade Gewinnzahlen.

Ah, dann passt es ja.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de