www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - L^p-Raum
L^p-Raum < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

L^p-Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 Fr 04.03.2005
Autor: Pit

Hallo zusammen,

folgende Definition wird hier wohl einigen bekannt sein :

[mm] L^p{ (\mu)} [/mm] = {f: f ist messbar und numerisch mit [mm] ||f||_{p}< \infty} [/mm]

mit  [mm] ||f||_{p} [/mm] = ( [mm] \integral_{omega}^{} {|f|^p d \mu})^{1/p} [/mm]

Bisher dachte ich mit [mm] |f|^p [/mm] ist der Betrag der Funktion hoch p gemeint,bis ich heute aufgeschnappt habe,daß die Bezeichnung was mit Äquivalenzklassen zu tun hat.Kann das vielleicht jemand aufklären ? Bin jetzt ein wenig irritiert.

        
Bezug
L^p-Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 Fr 04.03.2005
Autor: Stefan

Hallo Pit!

Also, wir haben einen Vektorraum

[mm] ${\cal L}^p(\mu):=\{f:\Omega\to \overline{\IR}\, : \, f \quad \mbox{ist messbar und numerisch mit} \quad \int\limits_{\Omega} |f|^p < \infty\}$. [/mm]

Durch

[mm] $N_p(f):= \left( \int\limits_{\Omega} |f|^p\, d\mu \right)^{\frac{1}{p}}$ [/mm]

wird [mm] $({\cal L}^p(\mu),N_p)$ [/mm] zu einem halbnormierten Raum.

"Halbnormiert" deshalb, weil für [mm] $N_p$ [/mm] alle Bedingungen einer Norm gelten außer

[mm] $N_p(f) [/mm] = 0 [mm] \quad \Rightarrow \quad [/mm] f=0$,

das gilt hier nicht.

Nun möchte man aber gerne einen normierten vollständigen Raum, also einen Banachraum, haben. Wie schafft man das? Naja, man dividiert das, was stört, einfach raus, bildet also den Quotientenvektorraum modulo des "Ausartungsaumes" der Halbnorm, also modulo:

[mm] $A_p:=\{f \in {\cal L}^p(\mu)\, : \, N_p(f)=0\}$. [/mm]

Wir bilden also den Quotientenraum

[mm] $L^p(\mu):={\cal L}^p(\mu)/A_p$, [/mm]

und definieren auf [mm] $L_p(\mu)$: [/mm]

[mm] $\Vert [/mm] f + [mm] N_p\Vert_p:=N_p(f)$. [/mm]

Die Norm wird also repräsentantenweise definiert (aufgrund der speziellen Struktur ist die Abbildung wohldefiniert).

Man kann zeigen, dass durch [mm] $\Vert \cdot \Vert_p$ [/mm] eine Norm gegeben wird, und dass [mm] $L_p(\mu)$ [/mm] zusammen mit dieser Norm ein Banachraum ist.

Der Einfachheit halber identifiziert man aber häufig die Äquivalenzklassen mit den Repräsentanten, schreibt also statt [mm] $\Vert [/mm] f + [mm] N_p\Vert_p$ [/mm] lieber [mm] $\Vert [/mm] f [mm] \Vert_p$, [/mm] und hat bei den Elementen von [mm] $L^p(\mu)$ [/mm] Funktionen im Sinn (und nicht deren Äquivalenzklassen).

Nur muss man sich halt klar machen, dass alle Eigenschaften, die wir über Elemente aus [mm] $L_p(\mu)$ [/mm] treffen, eigentlich für die Äquivalenzklassen gelten und daher nur [mm] $\mu$-fast [/mm] sicher gelten.

Zeigt man also für $f [mm] \in L^p(\mu)$: [/mm] $f=0$, so heißt das eigentlich:

$f=0$ [mm] $\mu$-fast [/mm] sicher,

d.h. auf [mm] $\mu$-Nullmengen [/mm] kann die Gleichung durchaus aufgehoben sein. Das ist aber meistens unerheblich, da man selten punktweise Aussagen braucht, sondern eher Konvergenzen "im $p$-ten Mittel", also in der [mm] $L^p(\mu)$-Norm, [/mm] wo man eh wieder zu den Klassen übergeht.

Ich hoffe ich konnte dir das alles etwas deutlicher machen. :-)

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de