www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Lsg. Randwertproblem
Lsg. Randwertproblem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lsg. Randwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:31 Sa 21.06.2014
Autor: Thomas_Aut

Aufgabe
Betrachte nachstehendes Randwertproblem

$y' = [mm] \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}y$ [/mm] mit den Randbedingungen [mm] $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}y(0) [/mm] + [mm] \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}y(1)= \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ [/mm]

Hat dieses Randwertproblem eine Lösung?

Hallo,

Nachstehend meine Lösung - ich führe sie bewusst, etwas umständlich aus (dieses Bsp. ist relativ einfach, aber das Verfahren dient zur Übung auch für komplexere Bsps)


Bestimmen wir vorerst einmal die Eigenwerte von [mm] $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ [/mm] - das char. Polynom lautet natürlich [mm] $\lambda^2$ [/mm] und damit existiert eine doppelte Nullstelle, nämlich [mm] $\lambda_{1,2} [/mm] =0$

Insofern erhalten wir als Fundamentalmatrix [mm] $\begin{pmatrix} exp(0) & x*exp(0) \\ 0 & exp(0) \end{pmatrix}$ [/mm] = [mm] $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ [/mm]


Nun bestimmen wir dazu die entsprechenden Eigenvektoren , zu $ [mm] \lambda [/mm] = 0$ erhalten wir den Eigenvektor [mm] $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ [/mm]
hierzu ist ein Hauptvektor dann natürlich [mm] \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ [/mm]

Also genügt die Wronski-Matrix der Form:

[mm] $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ [/mm]

Wir setzen $ R = [mm] \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} [/mm] + [mm] \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} [/mm] = [mm] \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}$ [/mm]

det(R) = 0, also hat das Randwertproblem keine Lösung.

Beste Grüße und Dank

Thomas


        
Bezug
Lsg. Randwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Sa 21.06.2014
Autor: MathePower

Hallo Thomas_Aut,

> Betrachte nachstehendes Randwertproblem
>  
> [mm]y' = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}y[/mm] mit den
> Randbedingungen [mm]\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}y(0) + \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}y(1)= \begin{pmatrix} 0 \\ 1 \end{pmatrix}[/mm]
>  
> Hat dieses Randwertproblem eine Lösung?
>  Hallo,
>  
> Nachstehend meine Lösung - ich führe sie bewusst, etwas
> umständlich aus (dieses Bsp. ist relativ einfach, aber das
> Verfahren dient zur Übung auch für komplexere Bsps)
>  
>
> Bestimmen wir vorerst einmal die Eigenwerte von
> [mm]\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}[/mm] - das char.
> Polynom lautet natürlich [mm]\lambda^2[/mm] und damit existiert
> eine doppelte Nullstelle, nämlich [mm]\lambda_{1,2} =0[/mm]
>  
> Insofern erhalten wir als Fundamentalmatrix [mm]\begin{pmatrix} exp(0) & x*exp(0) \\ 0 & exp(0) \end{pmatrix}[/mm]
> = [mm]\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}[/mm]
>  
>
> Nun bestimmen wir dazu die entsprechenden Eigenvektoren ,
> zu [mm]\lambda = 0[/mm] erhalten wir den Eigenvektor [mm]\begin{pmatrix} 0 \\ 1 \end{pmatrix}[/mm]
>  


[mm]\begin{pmatrix} 0 \\ 1 \end{pmatrix}[/mm] is kein Eigenvektor
zum Eigenwert [mm]\lambda=0[/mm], denn

[mm]\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} 0 \\ 1 \end{pmatrix} \not= \begin{pmatrix} 0 \\ 0 \end{pmatrix}[/mm]


> hierzu ist ein Hauptvektor dann natürlich [mm]\begin{pmatrix} 1 \\ 0 \end{pmatrix}$[/mm]
>  
> Also genügt die Wronski-Matrix der Form:
>  
> [mm]\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}[/mm]
>  
> Wir setzen [mm]R = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}[/mm]
>  
> det(R) = 0, also hat das Randwertproblem keine Lösung.
>  
> Beste Grüße und Dank
>
> Thomas
>  


Gruss
MathePower

Bezug
                
Bezug
Lsg. Randwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Sa 21.06.2014
Autor: Thomas_Aut


> Hallo Thomas_Aut,
>  
> > Betrachte nachstehendes Randwertproblem
>  >  
> > [mm]y' = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}y[/mm] mit den
> > Randbedingungen [mm]\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}y(0) + \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}y(1)= \begin{pmatrix} 0 \\ 1 \end{pmatrix}[/mm]
>  
> >  

> > Hat dieses Randwertproblem eine Lösung?
>  >  Hallo,
>  >  
> > Nachstehend meine Lösung - ich führe sie bewusst, etwas
> > umständlich aus (dieses Bsp. ist relativ einfach, aber das
> > Verfahren dient zur Übung auch für komplexere Bsps)
>  >  
> >
> > Bestimmen wir vorerst einmal die Eigenwerte von
> > [mm]\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}[/mm] - das char.
> > Polynom lautet natürlich [mm]\lambda^2[/mm] und damit existiert
> > eine doppelte Nullstelle, nämlich [mm]\lambda_{1,2} =0[/mm]
>  >  
> > Insofern erhalten wir als Fundamentalmatrix [mm]\begin{pmatrix} exp(0) & x*exp(0) \\ 0 & exp(0) \end{pmatrix}[/mm]
> > = [mm]\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}[/mm]
>  >  
> >
> > Nun bestimmen wir dazu die entsprechenden Eigenvektoren ,
> > zu [mm]\lambda = 0[/mm] erhalten wir den Eigenvektor [mm]\begin{pmatrix} 0 \\ 1 \end{pmatrix}[/mm]
>  
> >  

>
>
> [mm]\begin{pmatrix} 0 \\ 1 \end{pmatrix}[/mm] is kein Eigenvektor
>  zum Eigenwert [mm]\lambda=0[/mm], denn
>  
> [mm]\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} 0 \\ 1 \end{pmatrix} \not= \begin{pmatrix} 0 \\ 0 \end{pmatrix}[/mm]

Da hast du natürlich recht - der Eigenvektor muss natürlich [mm]\begin{pmatrix} 1 \\ 0 \end{pmatrix}[/mm] lauten und damit ist der Hauptvektor [mm]\begin{pmatrix} 0 \\ 1 \end{pmatrix}[/mm].

>  
>
> > hierzu ist ein Hauptvektor dann natürlich [mm]\begin{pmatrix} 1 \\ 0 \end{pmatrix}$[/mm]
>  
> >  

> > Also genügt die Wronski-Matrix der Form:
>  >  
> > [mm]\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}[/mm]
>  >  
> > Wir setzen [mm]R = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}[/mm]
>  
> >  

> > det(R) = 0, also hat das Randwertproblem keine Lösung.
>  >  
> > Beste Grüße und Dank
> >
> > Thomas
>  >  

>

Das sollte allerdings nichts am Rest ändern?

Gruß
Thomas

>
> Gruss
>  MathePower

Bezug
                        
Bezug
Lsg. Randwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Sa 21.06.2014
Autor: MathePower

Hallo Thomas_Aut,

> > Hallo Thomas_Aut,
>  >  
> > > Betrachte nachstehendes Randwertproblem
>  >  >  
> > > [mm]y' = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}y[/mm] mit den
> > > Randbedingungen [mm]\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}y(0) + \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}y(1)= \begin{pmatrix} 0 \\ 1 \end{pmatrix}[/mm]
>  
> >  

> > >  

> > > Hat dieses Randwertproblem eine Lösung?
>  >  >  Hallo,
>  >  >  
> > > Nachstehend meine Lösung - ich führe sie bewusst, etwas
> > > umständlich aus (dieses Bsp. ist relativ einfach, aber das
> > > Verfahren dient zur Übung auch für komplexere Bsps)
>  >  >  
> > >
> > > Bestimmen wir vorerst einmal die Eigenwerte von
> > > [mm]\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}[/mm] - das char.
> > > Polynom lautet natürlich [mm]\lambda^2[/mm] und damit existiert
> > > eine doppelte Nullstelle, nämlich [mm]\lambda_{1,2} =0[/mm]
>  >  
> >  

> > > Insofern erhalten wir als Fundamentalmatrix [mm]\begin{pmatrix} exp(0) & x*exp(0) \\ 0 & exp(0) \end{pmatrix}[/mm]
> > > = [mm]\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}[/mm]
>  >  >  
> > >
> > > Nun bestimmen wir dazu die entsprechenden Eigenvektoren ,
> > > zu [mm]\lambda = 0[/mm] erhalten wir den Eigenvektor [mm]\begin{pmatrix} 0 \\ 1 \end{pmatrix}[/mm]
>  
> >  

> > >  

> >
> >
> > [mm]\begin{pmatrix} 0 \\ 1 \end{pmatrix}[/mm] is kein Eigenvektor
>  >  zum Eigenwert [mm]\lambda=0[/mm], denn
>  >  
> > [mm]\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} 0 \\ 1 \end{pmatrix} \not= \begin{pmatrix} 0 \\ 0 \end{pmatrix}[/mm]
>  
> Da hast du natürlich recht - der Eigenvektor muss
> natürlich [mm]\begin{pmatrix} 1 \\ 0 \end{pmatrix}[/mm] lauten und
> damit ist der Hauptvektor [mm]\begin{pmatrix} 0 \\ 1 \end{pmatrix}[/mm].
>  
> >  

> >
> > > hierzu ist ein Hauptvektor dann natürlich [mm]\begin{pmatrix} 1 \\ 0 \end{pmatrix}$[/mm]
>  
> >  

> > >  

> > > Also genügt die Wronski-Matrix der Form:
>  >  >  
> > > [mm]\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}[/mm]
>  >  >  
> > > Wir setzen [mm]R = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}[/mm]
>  
> >  

> > >  

> > > det(R) = 0, also hat das Randwertproblem keine Lösung.
>  >  >  
> > > Beste Grüße und Dank
> > >
> > > Thomas
>  >  >  
> >
>  
> Das sollte allerdings nichts am Rest ändern?
>  


So ist es.


> Gruß
> Thomas
> >
> > Gruss
>  >  MathePower  


Gruss
MathePower

Bezug
                                
Bezug
Lsg. Randwertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:58 Sa 21.06.2014
Autor: Thomas_Aut

Super, danke vielmals für die Korrektur.


Lg Thomas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de