www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Lsg für inhomogenes System
Lsg für inhomogenes System < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lsg für inhomogenes System: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:59 Di 25.08.2009
Autor: uecki

Aufgabe
Aus dem Skript:

Die Lösung der inhomogenen Gleichung kann über die Methode der Variation der Koeffizienten der homogenen Lösung gefunden werden:

[mm] u_{partikulär}= e^{A*t} [/mm] * C(t) => C ' (t) = [mm] e^{-A*t} [/mm] * s(t)

Die allgemeinere Form der Lösung über die Präsentation durch die kanonische Integralbasis wird in dem nachfolgenden Beispiel demonstriert.

u'= [mm] \vektor{x' \\ y'} [/mm] = A*u + s = [mm] \pmat{ 4 & 1 \\ -2 & 1 }* \vektor{x \\ y} [/mm] + [mm] \vektor{-36*t \\ -2*e^t} [/mm]

Dann ergeben sich über das chrakteristische Polynom die Nullstellen zu
[mm] \lambda_{1}= [/mm] 3 und [mm] \lambda_{2} [/mm] = 2
und somit die homegene Lösung zu:

[mm] x_{h} [/mm] = [mm] C_{1}*e^{3*t} [/mm] + [mm] C_{2}*e^{2*t} [/mm]
[mm] y_{h} [/mm] = [mm] -C_{1}*e^{3*t} [/mm] - [mm] 2*C_{2}*e^{2*t} [/mm]

Nun suchen wir nach der partikulären Lösung:
[mm] x_{p} [/mm] = [mm] C_{1}(t)*e^{3*t} [/mm] + [mm] C_{2}(t)*e^{2*t} [/mm]
[mm] y_{p} [/mm] = [mm] -C_{1}(t)*e^{3*t} [/mm] - [mm] 2*C_{2}(t)*e^{2*t} [/mm]

[mm] C_{1}' *e^{3*t} [/mm] + [mm] C_{2}' *e^{2*t} [/mm] = -36*t
[mm] -C_{1}' *e^{3*t} [/mm] - [mm] 2*C_{2}' *e^{2*t} [/mm] = [mm] -2*e^{t} [/mm]

[mm] C_{1}' [/mm] = [mm] -72*t*e^{-3*t} [/mm] - [mm] 2*e^{-2*t} [/mm]
[mm] C_{2}' [/mm] = [mm] 36*t*e^{-2*t} [/mm] + [mm] 2*e^{-t} [/mm]


.
.
.

Hallo,

also, ich verstehe das alles bis dahin wo es rot wird.
Ich verstehe nicht was ich da für was eingesetzt habe.
Ich habe ja ganz oben die Vorgabe
[mm] u_{partikulär}= e^{A*t} [/mm] * C(t) => C ' (t) = [mm] e^{-A*t} [/mm] * s(t)
und die hätte ich jetzt darauf angewandt. Allerdings komme ich nicht auf das was da oben in rot steht....
Hoffe mir kann jemand einen Tipp geben :)

Und dann hab ich noch eine allgemeine Frage:
Wenn ich die homogene Lösung irgendeiner DGL bestimme, darf man dann immer nur soviele Konstanten in der Lösung haben wie der Grad der DGL ist ?

Danke schon mal

        
Bezug
Lsg für inhomogenes System: Antwort
Status: (Antwort) fertig Status 
Datum: 12:37 Di 25.08.2009
Autor: fencheltee


> Aus dem Skript:
>  
> Die Lösung der inhomogenen Gleichung kann über die
> Methode der Variation der Koeffizienten der homogenen
> Lösung gefunden werden:
>  
> [mm]u_{partikulär}= e^{A*t}[/mm] * C(t) => C ' (t) = [mm]e^{-A*t}[/mm] *
> s(t)
>  
> Die allgemeinere Form der Lösung über die Präsentation
> durch die kanonische Integralbasis wird in dem
> nachfolgenden Beispiel demonstriert.
>  
> u'= [mm]\vektor{x' \\ y'}[/mm] = A*u + s = [mm]\pmat{ 4 & 1 \\ -2 & 1 }* \vektor{x \\ y}[/mm]
> + [mm]\vektor{-36*t \\ -2*e^t}[/mm]
>  
> Dann ergeben sich über das chrakteristische Polynom die
> Nullstellen zu
> [mm]\lambda_{1}=[/mm] 3 und [mm]\lambda_{2}[/mm] = 2
>  und somit die homegene Lösung zu:
>  
> [mm]x_{h}[/mm] = [mm]C_{1}*e^{3*t}[/mm] + [mm]C_{2}*e^{2*t}[/mm]
>  [mm]y_{h}[/mm] = [mm]-C_{1}*e^{3*t}[/mm] - [mm]2*C_{2}*e^{2*t}[/mm]
>  
> Nun suchen wir nach der partikulären Lösung:
>  [mm]x_{p}[/mm] = [mm]C_{1}(t)*e^{3*t}[/mm] + [mm]C_{2}(t)*e^{2*t}[/mm]
>  [mm]y_{p}[/mm] = [mm]-C_{1}(t)*e^{3*t}[/mm] - [mm]2*C_{2}(t)*e^{2*t}[/mm]
>  

das nennen wir gleichung I

> [mm]C_{1}' *e^{3*t}[/mm] + [mm]C_{2}' *e^{2*t}[/mm] = -36*t

gleichung II

>  [mm]-C_{1}' *e^{3*t}[/mm] - [mm]2*C_{2}' *e^{2*t}[/mm] = [mm]-2*e^{t}[/mm]

wenn du nun gleichung I mit II addierst und mit [mm] -e^{-2t} [/mm] multiplizierst, kommst du auf die unten folgende gleichung für [mm] C_2. [/mm]

wenn du dann gleichung I mit 2 multiplizierst, gleichung II addierst und die gleichung dann mit [mm] e^{-3t} [/mm] multiplizierst, kriegst du die unten folgende gleichung für [mm] C_1 [/mm] heraus.

>  
> [mm]C_{1}'[/mm] = [mm]-72*t*e^{-3*t}[/mm] - [mm]2*e^{-2*t}[/mm]
> [mm]C_{2}'[/mm] = [mm]36*t*e^{-2*t}[/mm] + [mm]2*e^{-t}[/mm]
>  
> .
>  .
>  .
>  
> Hallo,

hallo ;-)

>  
> also, ich verstehe das alles bis dahin wo es rot wird.
>  Ich verstehe nicht was ich da für was eingesetzt habe.
>  Ich habe ja ganz oben die Vorgabe
> [mm]u_{partikulär}= e^{A*t}[/mm] * C(t) => C ' (t) = [mm]e^{-A*t}[/mm] *
> s(t)
>  und die hätte ich jetzt darauf angewandt. Allerdings
> komme ich nicht auf das was da oben in rot steht....
>  Hoffe mir kann jemand einen Tipp geben :)
>  
> Und dann hab ich noch eine allgemeine Frage:
>  Wenn ich die homogene Lösung irgendeiner DGL bestimme,
> darf man dann immer nur soviele Konstanten in der Lösung
> haben wie der Grad der DGL ist ?

mh kenne leider nur wenige formen von dgls, daher kann ich die frage da nicht global für beantworten.

>  
> Danke schon mal  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de