www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - M soll eine Gruppe sein
M soll eine Gruppe sein < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

M soll eine Gruppe sein: Frage
Status: (Frage) beantwortet Status 
Datum: 15:49 Mi 27.10.2004
Autor: cletus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
ich verzweifele an folgenden beiden Aufgaben:
Teil 1: Zeige, dass [mm]M_{nxn}(\IR)[/mm] eine Gruppe (für die Matrizenaddition) ist.

Teil 2: zeige, dass die menger aller symmetrischen Matrizen eine Gruppe (für die Matrizenaddition) ist.

In Teil 1 habe ich einfach nach Definition drei Matrizen ausgeschrieben, so dass z.B. beim Beweis der Assoziativität eine große Matrix mit den Elementen ala "[mm]n_{11}+(m_{11}+o_{11})[/mm]" steht. Die Elemente müssen assoziativ sein, da die Assoziativität in [mm]\IR[/mm] gilt.

(Stimmt das überhaupt? ;-) )

Nun weiß ich aber nicht, was ich mit Teil 2 anfangen soll:
Da kann ich den Beweis von Teil 1 doch praktisch 1 zu 1 abschreiben, oder vertue ich mich da?

Grüße
Philipp

        
Bezug
M soll eine Gruppe sein: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 Mi 27.10.2004
Autor: choosy


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo,
>  ich verzweifele an folgenden beiden Aufgaben:
>  Teil 1: Zeige, dass [mm]M_{nxn}(\IR)[/mm] eine Gruppe (für die
> Matrizenaddition) ist.
>  
> Teil 2: zeige, dass die menger aller symmetrischen Matrizen
> eine Gruppe (für die Matrizenaddition) ist.
>  
> In Teil 1 habe ich einfach nach Definition drei Matrizen
> ausgeschrieben, so dass z.B. beim Beweis der Assoziativität
> eine große Matrix mit den Elementen ala
> "[mm]n_{11}+(m_{11}+o_{11})[/mm]" steht. Die Elemente müssen
> assoziativ sein, da die Assoziativität in [mm]\IR[/mm] gilt.
>  
> (Stimmt das überhaupt? ;-) )

naja ich wuerds etwas allgemeiner machen
seien [mm] $A=(a_{ij})_{i,j=1...n}, B=(b_{ij})_{i,j=1...n}, C=(c_{ij})_{i,j=1...n} \in M_n(IR)$ [/mm]

assoziativ:
$$
(A+B)+C = ( [mm] a_{ij}+b_{ij} )_{i,j=1...n}+(c_{ij})_{i,j=1...n} [/mm]
=  ( [mm] a_{ij}+b_{ij} +(c_{ij})_{i,j=1...n} [/mm]
= ( [mm] a_{ij})_{i,j=1...n}+ [/mm] ( [mm] b_{ij} [/mm] + [mm] c_{ij} )_{i,j=1...n} [/mm]
=A+(B+C)
$$
ich denke inverses=negatives, und neutrales element=einheitsmatrix ist klar

>  
> Nun weiß ich aber nicht, was ich mit Teil 2 anfangen
> soll:
>  Da kann ich den Beweis von Teil 1 doch praktisch 1 zu 1
> abschreiben, oder vertue ich mich da?
>  


naja du musst zeigen das das ergebniss der addition wieder symmetrisch ist.

> Grüße
>  Philipp
>  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de