www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Mächtigkeit von Mengen
Mächtigkeit von Mengen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mächtigkeit von Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:47 Mi 21.11.2018
Autor: rubi

Hallo zusammen,

ich habe folgende Fragen:

1,) Kann man zeigen, dass die Intervalle ]a,b[ und ]c,d[ gleich mächtig sind, in dem man eine Gerade durch die Punkte (a,c) und (b,d) legt und zeigt, dass es sich hierbei um eine bijektve Funktion handelt ?

2.) Kann man zeigen, dass [mm] \IR [/mm] und das Intervall ]-1,1[ gleich mächtig ist, in dem ich eine Tangensfunktion bestimme, die bei x =-1 und x = 1 senkrechte Asymptoten hat und daher eine bijektive Abbildung darstellt ?

3.) Sind die Mengen ]0,1[ und das karteische Produkt ]0,1[ X ]0,1[ gleichmächtig ?
Falls ja, wie kann man dies zeigen bzw. falls nein wieso nicht ?

vielen Dank für eure Rückmeldungen.

Grüße
Rubi

Ich habe diese Frage in keinem anderen Forum gestellt.


        
Bezug
Mächtigkeit von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:43 Do 22.11.2018
Autor: Chris84


> Hallo zusammen,

Hallo

>
> ich habe folgende Fragen:
>  
> 1,) Kann man zeigen, dass die Intervalle ]a,b[ und ]c,d[
> gleich mächtig sind, in dem man eine Gerade durch die
> Punkte (a,c) und (b,d) legt und zeigt, dass es sich hierbei
> um eine bijektve Funktion handelt ?

Klingt gut :)

>
> 2.) Kann man zeigen, dass [mm]\IR[/mm] und das Intervall ]-1,1[
> gleich mächtig ist, in dem ich eine Tangensfunktion
> bestimme, die bei x =-1 und x = 1 senkrechte Asymptoten hat
> und daher eine bijektive Abbildung darstellt ?

Klingt ebenso gut.

>
> 3.) Sind die Mengen ]0,1[ und das karteische Produkt ]0,1[
> X ]0,1[ gleichmächtig ?
> Falls ja, wie kann man dies zeigen bzw. falls nein wieso
> nicht ?

Ich erinnere mich an eine Diskussion aus einer Matheuebung, dass [mm] $\IR$ [/mm] and [mm] $\IC$ [/mm] gleichmaechtig seien. Da [mm] $\IC$ [/mm] und [mm] $\IR^2$ [/mm] isomorph sind, muessen auch [mm] $\IR$ [/mm] und [mm] $\IR^2$ [/mm] gleichmaechtig sein (es ist auch nicht schwierig, eine Bijektion, von [mm] $\IC$ [/mm] nach [mm] $\IR^2$ [/mm] zu finden). Das suggeriert zumindest, dass auch $(0,1)$ und $(0,1) [mm] \times [/mm] (0,1)$ gleichmaechtig sind. Leider kann ich gerade keine solche Funktion angeben.

>  
> vielen Dank für eure Rückmeldungen.
>
> Grüße
>  Rubi
>  
> Ich habe diese Frage in keinem anderen Forum gestellt.
>  


Gruss,
Chris

Bezug
        
Bezug
Mächtigkeit von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 Do 22.11.2018
Autor: HJKweseleit


> 3.) Sind die Mengen ]0,1[ und das karteische Produkt ]0,1[
> X ]0,1[ gleichmächtig ?
> Falls ja, wie kann man dies zeigen bzw. falls nein wieso
> nicht ?

Ja.

Jede Zahl x aus ]0|1[ lässt sich eindeutig als (ggf. unendlich lange) Dezimalzahl [mm] x=0,a_1a_2a_3.... (a_i [/mm] jeweils Ziffern) schreiben.

Damit lässt sich jedes Element [mm] (0,a_1a_2a_3...|0,b_1b_2b_3...) \in [/mm] ]0|1[ x ]0|1[ eindeutig abbilden auf [mm] 0,a_1b_1a_2b_2a_3b_3... \in [/mm]  ]0|1[ abbilden. Man mischt also die Ziffern abwechselnd in die neue Zahl ein. Die Umkehrabbildung dürfte damit auch klar sein.

So wird aus (0,2145368|0,3361992778) die Zahl 0,231346513969820707080 und umgekehrt aus 0,3456789910203040 das Tupel (0,35791234|0,4689).

Wenn man noch [mm] 1=0,\overline{9} [/mm] setzt, kann man sogar die Intervalle auf [0|1] ausdehnen.

Bezug
                
Bezug
Mächtigkeit von Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:23 Do 22.11.2018
Autor: fred97


> > 3.) Sind die Mengen ]0,1[ und das karteische Produkt ]0,1[
> > X ]0,1[ gleichmächtig ?
> > Falls ja, wie kann man dies zeigen bzw. falls nein wieso
> > nicht ?
>  
> Ja.
>  
> Jede Zahl x aus ]0|1[ lässt sich eindeutig als (ggf.
> unendlich lange) Dezimalzahl [mm]x=0,a_1a_2a_3.... (a_i[/mm] jeweils
> Ziffern) schreiben.

Das stimmt nicht: 0,099999999.... = 0,10000000.....

Dein Beweis ist zu retten, wenn man sich auf eine der beiden möglichen Dezimaldarstellungen einigt.

  
Bei der ersten Möglichkeit ist in [mm] $x=0,a_1a_2a_3.....$ [/mm] verboten, dass fast alle (also bis auf endlich viele) [mm] a_j=9 [/mm] sind

und bei der zweiten Möglichkeit ist in [mm] $x=0,a_1a_2a_3.....$ [/mm] verboten, dass fast alle (also bis auf endlich viele) [mm] a_j=0 [/mm] sind.

Bei der ersten Möglichkeit ist [mm] \bruch{1}{10}=0,100000..... [/mm] und beider zweiten haben wir  [mm] \bruch{1}{10}=0,099999..... [/mm] .


> Damit lässt sich jedes Element
> [mm](0,a_1a_2a_3...|0,b_1b_2b_3...) \in[/mm] ]0|1[ x ]0|1[ eindeutig
> abbilden auf [mm]0,a_1b_1a_2b_2a_3b_3... \in[/mm]  ]0|1[ abbilden.
> Man mischt also die Ziffern abwechselnd in die neue Zahl
> ein. Die Umkehrabbildung dürfte damit auch klar sein.
>  
> So wird aus (0,2145368|0,3361992778) die Zahl
> 0,231346513969820707080 und umgekehrt aus
> 0,3456789910203040 das Tupel (0,35791234|0,4689).
>  
> Wenn man noch [mm]1=0,\overline{9}[/mm] setzt, kann man sogar die
> Intervalle auf [0|1] ausdehnen.


Bezug
                        
Bezug
Mächtigkeit von Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:24 Do 22.11.2018
Autor: HJKweseleit

Ja, danke, ich hatte übersehen, dass durch das Mixen die beiden verschiedenen Möglichkeiten (z.B. 0,1 = 0,09999999...) hinterher keine Eindeutigkeit mehr zulassen.

Gruß
HJKweseleit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de