www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Majorantenkriterium
Majorantenkriterium < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Majorantenkriterium: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:00 So 15.01.2006
Autor: Doreen

Aufgabe
Man untersuche die folgenden Reihen auf Konvergenz

[mm] \summe_{k=1}^{ \infty} \bruch{k+5}{3k^{3} -2k +1} [/mm]

(Hinweis: Majoranten-Kriterium)

Hallo,


in der Vorlesung haben wir uns aufgeschrieben:

Es sei  [mm] \summe_{k=1}^{ \infty} a_{k} [/mm] vorgegeben.

Gibt es eine konvergente Majorante, das ist eine konvergente
Reihe [mm] \summe_{k=1}^{ \infty} c_{k} [/mm] mit

[mm] |a_{k}| \le c_{k} [/mm] für alle k [mm] \in \IN, [/mm]

so konvergiert die Reihe [mm] \summe_{k=1}^{ \infty} a_{k} [/mm]

Dazu dann noch den Beweis...

Wie kann ich jetzt von der genannten Aufgabe aus auf das Majorantenkriterium schließen?

Woher soll ich mir jetzt ein [mm] summe_{k=1}^{ \infty} c_{k} [/mm] herzaubern? Mit dem ich dann so ein Vergleich machen kann...

Im Allgemeinen, wie handle ich mit so einer Aufgabe überhaupt...
und wie setze ich die Theorie in die Praxis (auf die obige Aufgabe) um...

Hierzu habe ich keine leiseste Ahnung, noch nicht mal eine "in den falschen Weg laufende" Vorstellung.

Für Hilfe und Beantwortung vielen Dank im Voraus.

Gruß Doreen

Diese Frage habe ich in keinen anderem Forum gestellt


        
Bezug
Majorantenkriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 So 15.01.2006
Autor: piet.t

Hallo Doreen,

Konvergenzbeweise über Majorantenkriterium laufen im Endeffekt meistens auf eine ziemlich wüstes Abschätzen der einzelnen Summanden hinaus.
Die Kunst ist, durch scharfes Hinschauen ein passendes [mm] c_k [/mm] zu finden, das so gross ist, dass es sicher über [mm] a_k [/mm] liegt, aber auch noch so klein, dass es konvergiert.
In diesem Fall verhalten sich die Summanden für k [mm] \to \infty [/mm] ja wie irgendetwas von der Größenordnung [mm] 1/k^2, [/mm] also wollen wir doch versuchen, so eine Majorante zu konstruieren, d.h. die Summen im Zähler und Nenner zu eliminieren.
[mm]a_k = \frac{k+5}{3k^3-2k+1}[/mm]
Um den Wert zu vergrößern müssen wir den Zähler vergrößern oder den Nenner verkleinern. Da die ersten Summanden nicht interessieren (Konvergenz hängt ja nur vom Verhalten "für schließlich alle k" ab) können wir für [mm] k\ge [/mm] 5 die 5 im Zähler durch ein k ersetzen:
[mm]a_k \le \frac{k+k}{3k^3 - 2k+1} = \frac{2k}{3k^3 -2k +1}[/mm]
Damit wäre die Summe im Zähler erschlagen (die Gefahr ist aber immer, dass wir jetzt schon zu grob abgeschätzt haben und unsere Majorante schon nicht mehr kovergiert....)
Die +1 im Nenner könnte man einfach weglassen (macht den Wert nur größer), problematisch ist aber das -2k: wenn das wegfällt würde unsere Abschätzung wieder kleiner, das darf aber nicht sein. Also borgen wir uns von vorne ein [mm] k^3 [/mm] und schreiben:
[mm]a_k \le \frac{2k}{2k^3 + (k^3 -2k +1)}[/mm]
Die Klammer im Nenner wird aber für hinreichend großes k immer positiv sein (die genaue Grenze darst Du suchen wenn Du willst), d.h. weglassen der Klammer vergrößert wieder den Wert:
[mm]a_k \le \frac{2k}{2k^3} = \frac{1}{k^2}[/mm]
Also ist [mm] \sum \frac{1}{k^2} [/mm] eine Majorante und noch dazu konvergent,somit konvergiert auch unsere Ausgangsreihe.

Gruß

piet

P.S.: Die Betragsstriche in der Abschätzung konnten wir uns sparen, weil die [mm] a_k [/mm] ja sowieso alle positiv sind. Das sollte aber zumindest irgendwo erwähnt sein.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de