Mannigfaltigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 08:51 Mi 27.06.2012 | Autor: | Gnocchi |
Aufgabe | Zeigen Sie: Die folgenden Menngen M sind 1-dimensionale Mannigfaltigkeiten.
a.) M:={x [mm] \in \IR^{3}|x_2^{2}-x_1-x_2)^{2}+2x_1=0, x_3^{2}+2 =x_2 [/mm] }
b.) M:={x [mm] \in \IR^{3}|x =(t,t^{3}+3,t^{2}) [/mm] für ein t [mm] \in \IR [/mm] } |
Ich hab allgemein eine Frage wie ich an Aufgabe b.) rangeh, weil mich das t irgendwie verwirrt und uns gesagt wurde, dass wir hierfür den Satz über Karten brauchen und uns ein Beispiel im Skript anschauen sollen.
Da haben wir aber auch erst zunächst unser altes Kochrezept angewendet. Jedoch weiß ich auch nicht wie ich da mit dem t umgehen soll, weil wir eher nur so Beispiele wie in a.) hatten.
Hätte ich dann bei b.):
Df(x) = [mm] \pmat{ 1 & 3t^{2} & 2t } [/mm] => rang=1 und somit maximal => Mannigfaltigkeit.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:00 Mi 27.06.2012 | Autor: | fred97 |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
> Zeigen Sie: Die folgenden Menngen M sind 1-dimensionale
> Mannigfaltigkeiten.
> a.) M:={x [mm]\in \IR^{3}|x_2^{2}-x_1-x_2)^{2}+2x_1=0, x_3^{2}+2 =x_2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
> }
> b.) M:={x [mm]\in \IR^{3}|x =(t,t^{3}+3,t^{2})[/mm] für ein t [mm]\in \IR[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
> }
> Ich hab allgemein eine Frage wie ich an Aufgabe b.)
> rangeh, weil mich das t irgendwie verwirrt und uns gesagt
> wurde, dass wir hierfür den Satz über Karten brauchen und
> uns ein Beispiel im Skript anschauen sollen.
> Da haben wir aber auch erst zunächst unser altes
> Kochrezept angewendet. Jedoch weiß ich auch nicht wie ich
> da mit dem t umgehen soll, weil wir eher nur so Beispiele
> wie in a.) hatten.
> Hätte ich dann bei b.):
> Df(x) = [mm]\pmat{ 1 & 3t^{2} & 2t }[/mm] => rang=1 und somit
> maximal => Mannigfaltigkeit.
Das M in b) kannst Du auch so schreiben:
[mm] M=\{x \in \IR^{3}|x_3=x_1^2, x_2=x_1^3+3\}
[/mm]
FRED
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 09:33 Mi 27.06.2012 | Autor: | Gnocchi |
> Das M in b) kannst Du auch so schreiben:
>
>
> [mm]M=\{x \in \IR^{3}|x_3=x_1^2, x_2=x_1^3+3\}[/mm]
>
> FRED
>
Okay, danke das hilft mir schon weiter. Das ergibt sich einfach aus den einzelnen Komponenten von x? Bloß, dass wir für t dann [mm] x_1 [/mm] einsetzen?
Dann haben wir:
f: [mm] \IR^{3} \to \IR [/mm] {2}
[mm] f(x_1,x_2,x_3) [/mm] = [mm] (x_1^{2}-x_3,x_1{3}+3-x_2)
[/mm]
f [mm] \in C^{1}(\IR^{3},\IR^{2}), [/mm] denn f ist ein Polynom und Polynome sind differenzierbar.
Df(x)= [mm] \pmat{ 2x_1 & 0 & 0 \\ 3x_1 & 0 & 0 }.
[/mm]
Dann ist rang Df(x) [mm] \ge [/mm] rang [mm] \pmat{ 2x_1 & 0 \\ 3x_1 & 0 }
[/mm]
Dieser ist maximal, wenn [mm] x_1 [/mm] ungleich 0 ist. Also ist das genau dann eine Mannigfaltigkeit, wenn [mm] x_1 [/mm] ungleich 0 ist.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:41 Mi 27.06.2012 | Autor: | Gnocchi |
Upps, das Obere war eigentlich als Frage gedacht.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:20 Fr 29.06.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|