www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Markov-Ketten
Markov-Ketten < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Markov-Ketten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:37 Di 20.03.2007
Autor: yogi

Aufgabe
Aufgabe 1)
Gegeben sei die Matrix
[mm] P=\pmat{ \bruch{1}{3} & \bruch{1}{3} & \bruch{1}{3} \\ \bruch{1}{3} & \bruch{1}{3} & \bruch{1}{3} \\ \bruch{1}{3} & \bruch{1}{2} & a } [/mm]
(a) Man bestimme a so, dass P die Übergangsmatrix einer homogenen Markovkette X mit den Zuständen 0,1,2 ist. Man zeichne das Übergangsdiagramm.
(b) Man bestimme die Zweischrittbergangsmatrix [mm] P^{(2)}. [/mm] Wie groß ist die Wahrscheinlichkeit, dass sich das System nach zwei Zeitschritten in den Zuständen 0,1,2 aufhält, falls zur Anfangszeit T=0 gilt:
[mm] P(X(0)=0)=\bruch{1}{3}, P(X(0)=1)=\bruch{1}{3}, P(X(0)=2)=\bruch{1}{3}. [/mm]
(c) Man berechne die stationäre Verteilung.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

zu (a):
Ich habe rausbekommen, dass a = [mm] \bruch{1}{6} [/mm] sein muss, da bei einer homogenen Markov-Kette die Übergangswahrscheinlichkeit in jedem Punkt zu 100% festgelegt sein muss. Stimmt das?


zu (c):
um die stationäre Verteilung zu bestimmen subtrahiere ich zuerst die Einheitsmatrix von P und erhalte:
[mm] P-E=\pmat{ -\bruch{2}{3} & \bruch{1}{3} & \bruch{1}{3} \\ \bruch{1}{3} & -\bruch{2}{3} & \bruch{1}{3} \\ \bruch{1}{3} & \bruch{1}{2} & -\bruch{5}{6} } [/mm]
nun setze ich jedes Element in der letzten Spalte gleich 1 und erhalte:
[mm] L=\pmat{ -\bruch{2}{3} & \bruch{1}{3} & 1 \\ \bruch{1}{3} & -\bruch{2}{3} & 1 \\ \bruch{1}{3} & \bruch{1}{2} & 1 } [/mm]
mithilfe des Gaußschen Transformationsverfahrens berechne ich nun [mm] L^{-1} [/mm] und erhalte:
[mm] L^{-1}=\pmat{ -1 & \bruch{1}{7} & \bruch{6}{7} \\ 0 & -\bruch{6}{7} & \bruch{6}{7} \\ \bruch{1}{3} & \bruch{8}{21} & \bruch{2}{7} } [/mm]
Die stationäre Verteilung ist also gleich der untersten Zeile von [mm] L^{-1}. [/mm] Die stationäre Verteilung ist also [mm] \pmat{\bruch{1}{3} & \bruch{8}{21} & \bruch{2}{7} } [/mm]
Richtig?


zu (b):
Hier fehlt mir leider so gänzlich der Ansatz. Kann mir jemand sagen, wie ich eine Mehrschrittübergangsmatrix bilde, oder mir eine Quelle nennen, wo dies erklärt wird?


Vielen Dank schonmal für eure Zeit!

        
Bezug
Markov-Ketten: Zweischrittübergangsmatrix
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:51 Mi 21.03.2007
Autor: yogi

kann mir niemand einen Tipp dazu geben, wie man eine Zweischrittübergangsmatrix berechnet?

Bezug
        
Bezug
Markov-Ketten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:26 Mi 21.03.2007
Autor: wauwau


Zweischrittübergansmatrix ist einfach [mm] P^{2} [/mm] wenn P die Einschrittübergangsmatrix ist.

Bezug
                
Bezug
Markov-Ketten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:47 Mi 21.03.2007
Autor: yogi

So einfach? Und die Initialwahrscheinlichkeit zum Zeitpunkt 0 fliesst gar nicht in diese Rechnung mit ein?


edit: in diesem Fall wäre das Ergebnis also
[mm] P^2=\pmat{ \bruch{1}{3} & \bruch{7}{18}&\bruch{5}{18} \\\bruch{1}{3} & \bruch{7}{18}&\bruch{5}{18} \\ \bruch{1}{3} & \bruch{13}{36}&\bruch{11}{36} } [/mm]

Was wäre aber wenn die Ausgangswahrscheinlichkeit nicht genau zu [mm] \bruch{1}{3} [/mm] auf alle 3 Punkte verteilt gewesen wäre?

Bezug
                        
Bezug
Markov-Ketten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:12 Mi 21.03.2007
Autor: JackBauer2007

ups muss wohl aus versehen auf Senden statt auf Vorschau gekommen sein, SORRY.
Bezug
                        
Bezug
Markov-Ketten: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 21:27 Mi 21.03.2007
Autor: JackBauer2007

Deine [mm] P^{2} [/mm] ist meiner Meinung nach richtig.

und jetzt muss man dann noch die Wahrscheinlichkeiten für die Frage
...zwei Zeitschritten in den Zuständen 0,1,2 aufhält ... beantworten.

Dazu muss man glaube ich für den Zustand 0:
[mm] \bruch{1}{3} [/mm] * P(x=0)=0 + [mm] \bruch{1}{3} [/mm] * P(x=0)=1 + [mm] \bruch{1}{3} [/mm] * P(x=0)=2
also [mm] \bruch{1}{3} [/mm] * [mm] \bruch{1}{3} [/mm] + [mm] \bruch{1}{3} [/mm] * [mm] \bruch{1}{3} [/mm] + [mm] \bruch{1}{3} [/mm] * [mm] \bruch{1}{3} [/mm] = [mm] \bruch{1}{3} [/mm]  
Also ist die Wk dafür in 2 Schritten in den Zustand 0 zu kommen = [mm] \bruch{1}{3} [/mm]

analog Zustand 1:
[mm] \bruch{7}{18} [/mm] * [mm] \bruch{1}{3} [/mm] + [mm] \bruch{7}{18} [/mm] * [mm] \bruch{1}{3} [/mm] + [mm] \bruch{13}{36} [/mm] * [mm] \bruch{1}{3} [/mm] = [mm] \bruch{41}{108} [/mm]  

analog Zustand 2:
[mm] \bruch{5}{18} [/mm] * [mm] \bruch{1}{3} [/mm] + [mm] \bruch{5}{18} [/mm] * [mm] \bruch{1}{3} [/mm] + [mm] \bruch{11}{36} [/mm] * [mm] \bruch{1}{3} [/mm] = [mm] \bruch{31}{108} [/mm]  

Ich hoffe jemand kann diese Rechnung bestätigen, da ich mir auch nicht 100% sicher bin.
Deshalb gebe ich erstmal den Status fehlerhaft für die Antwort.

Gruß Jack

Bezug
                                
Bezug
Markov-Ketten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:58 Do 22.03.2007
Autor: yogi

Klingt zumindest logisch! Ist da jetzt noch was falsch (ich frage nur, weil es von jemandem als falsch markiert worden ist)?

Bezug
        
Bezug
Markov-Ketten: Antwort
Status: (Antwort) fertig Status 
Datum: 15:01 Mi 21.03.2007
Autor: JackBauer2007

Also ich habe a und c genauso gemacht hoffe mal das es dann auch stimmt.

für Teil b muss man glaube die Matrix mit sich selbst malnehmen. Matrixmultiplikation. oder?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de