www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Markov-Tschebyscheff
Markov-Tschebyscheff < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Markov-Tschebyscheff: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:27 Di 06.12.2011
Autor: mwieland

Aufgabe
Sei X Exponential(2) und Y Poisson(3) verteilt und die beiden ZV abhängig.

a) Wenden Sie die Markov-Ungleichung für k = 1 an, um die W!, dass [mm] X^{2} [/mm] größer als 5 ist abzuschätzen.
b) Drücken Sie [mm] F_{X^{2}} [/mm] (die Verteilungsfunktion von [mm] X^{2}) [/mm] durch [mm] F_{X} [/mm] aus. Berechnen Sie nachfolgen die obige W! exakt und vergleichen Sie.
c)Sei Z gleich X plus 8 minus dem Zweifachen von Y. Schätzen Sie die W!, dass Z negativ ist, ab. Vergrößern Sie dazu das betrachtete Ereignis und wenden  Sie die Markov-Ungleichung für k = 2 (dh Tschebyscheff) an. Weclhe annahme benützen Sie dabei? Warum funktioniert die Abschätzung nicht?

hallo alle miteinander!

Ich habe in meinem Skript die Markov-Ungleichung gefunden, finde aber in der Formel der Ungl. kein k, auch nicht nach Internetrecherche...

Wie löse ich denn dann hier Aufgabe a)?

kann mir jemand einen kleinen Tipp geben bitte?

vielen dank,

mfg mark

        
Bezug
Markov-Tschebyscheff: Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 Di 06.12.2011
Autor: Harris

Hi!

Also, auf Wikipedia lautet die allgemeine Markov-Ungleichung wie folgt:
X Zufallsvariable, a Konstante, h monoton wachsende Funktion, dann gilt
[mm] $P(X\geq a)\leq \frac{E[h(X)]}{h(a)}.$ [/mm]

Hier in deinem Beispiel ist [mm] $X^2=(1-e^{-2t})^2$ [/mm] deine Zufallsvariable, der Wert a sei 5.

Zu dem k. Weiter unten heißt es ja, bei k=2 entspricht das der Tschebyschow-Ungleichung. Bei Wikipedia-Markovungleichungsartikel steht, dass die Tschebyscheff-Ungleichung eine Variante dieser ist. Hierbei ist [mm] $h(x)=x^2$. [/mm]
Deshalb nehme ich an, das $k$ ist der Exponent des Monoms [mm] $x^k$. [/mm]

Du musst also die Abweichung durch
[mm] P[X^2\geq 5]\leq \frac{E[X^2]}{5} [/mm]
abschätzen.

Ich weiß nicht, ob ichs richtig gemacht habe, aber ich bekomme ein Zwanzigstel heraus - Unter der Voraussetzung, dass Exponential(2) bei euch [mm] $A(t)=1-e^{-2t}$ [/mm] bedeutet.

Gruß, Harris

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de