www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Markovkette Rückkehrzeit
Markovkette Rückkehrzeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Markovkette Rückkehrzeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 Fr 24.02.2012
Autor: Fry


Huhu zusammen,
habe folgendes Problem:
Sei [mm] (X_n)_n [/mm] eine Markovkette mit endlichem Zustandsraum [mm] \{s_1,...,s_k\} [/mm]
Die Markovkette starte nun in [mm] s_1 [/mm]
[mm] T_{11} [/mm] sei die erste Rückkehrzeit zu [mm] s_1 [/mm]

Gilt nun:
[mm] ET_{11}<\infty \Rightarrow P(T_{11}<\infty)=1 [/mm]
?

Falls ja, warum. Würde mich über eure Hilfe freuen.
Viele Grüße
Fry


        
Bezug
Markovkette Rückkehrzeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:56 Fr 24.02.2012
Autor: Gonozal_IX

Hallo Fry,

die Fragestellung hat letztendlich nichts mit Markovketten zu tun.
Es gilt doch allgemein für Zufallsvariablen X:

E[X] existiert => $P(X < [mm] \infty) [/mm] = 1$, d.h. X ist fast sicher endlich.

Beweis ganz einfach per Kontradiktion.

MFG,
Gono.

Bezug
                
Bezug
Markovkette Rückkehrzeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:44 Fr 24.02.2012
Autor: Fry


Hey Gono,

danke :). Du hast meine Frage gleich vorweggenommen.
Wie würdest du das denn mit Widerspruch machen?
Hab nur in einem WT-Buch einen Beweis gefunden,der sich drauf stützt,dass
[mm] $|X|\ge a*1_{\{|X|=\infty\}}$ [/mm] für alle [mm] $a\in(0,\infty)$ [/mm]
Verstehe aber nicht, warum das gilt.

LG
Fry


Bezug
                        
Bezug
Markovkette Rückkehrzeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:54 Fr 24.02.2012
Autor: Fry

Ah ok, Ungleichung ist klar ;)


Bezug
                        
Bezug
Markovkette Rückkehrzeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:55 Fr 24.02.2012
Autor: Gonozal_IX

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hiho,

das ist eine einfache Umformung :-)

$|X| = |X|*1_{\{|X| \not=\infty\}} + |X|*1_{\{|X| =\infty\}} \ge 0*1_{\{|X| \not=\infty\}} + |X|*1_{\{|X| =\infty\}} = |X|*1_{\{|X| =\infty\}}$

Und auf $\{|X| = \infty\}}$ gilt nunmal:

$|X| = \infty > a, a\in\IR$ und damit insgesamt:

$|X| \ge |X|*1_{\{|X| =\infty\}} > a*1_{\{|X| =\infty\}}$

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de