www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Martingale
Martingale < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Martingale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 Do 07.06.2012
Autor: Fry

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


Hallo,

also es gilt ja:
M stetiges lokales Martingal mit M_0=0. Dann ist das stochastische Exponential $e^{M-\frac{1}{2}\langle M \rangle$ lokales Martingal.

Kann man dieselbe Schlußfolgerung für Martingale ziehen?
Also M stetiges Martingal. Dann ist e^... Martingal ?

Finde es nur in der oberen Variante.


LG
Fry


        
Bezug
Martingale: Antwort
Status: (Antwort) fertig Status 
Datum: 07:31 Fr 08.06.2012
Autor: Gonozal_IX

Hiho,

ja kann man. Die []Quelle ist wohl zu offensichtlich, um sie zu finden ;-)

MFG,
Gono.

Bezug
                
Bezug
Martingale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:05 Fr 08.06.2012
Autor: Fry


Hey Gono,

so schlau war ich auch ;),
ich hab schon so einige Seiten durchsucht.
Wikipedia enthält keinen Beweis. Dann nützt mir das nix.
Und manchmal stehen da auch leider falsche Dinge. In dem Artikel wird auch von einem beschränkten Martingal ausgegangen.


LG


Bezug
                        
Bezug
Martingale: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Fr 08.06.2012
Autor: Gonozal_IX

Hiho,

schau mal im Klenke, Satz 21.70.
Dort wird genau das bewiesen, was du suchst. Ohne Einschränkung der Beschränktheit, nur für Martingale.

MFG,
Gono.


Bezug
                                
Bezug
Martingale: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:21 Fr 08.06.2012
Autor: Fry


Huhu,

also Satz 21.70 (S.471 ?) sagt bei mir nur aus, dass [mm] $M^2-\langle M\rangle$ [/mm] Martingal ist...

VG


Bezug
                                        
Bezug
Martingale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:27 Fr 22.06.2012
Autor: Fry

Hat sich erledigt, ist im Allgemeinen nur lokales Martingal.


Bezug
                                        
Bezug
Martingale: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Sa 23.06.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de