www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Maße
Maße < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maße: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:26 Di 23.06.2015
Autor: Emma23

Aufgabe
Es bezeichne [mm] P(\IZ) [/mm] die Potenzmenge von [mm] \IZ, [/mm] d.h. die Menge aller Teilmengen von [mm] \IZ. [/mm] Für [mm] A\subset \IZ [/mm] sei [mm] \mu:P(\IZ)\to [0,\infty] [/mm] mit [mm] \mu(A)=\begin{cases} \#A, & A \mbox{ endlich} \\ \infty, & \mbox{ sonst} \end{cases}, [/mm] wobei #A die Anzahl der Elemente in A bezeichnet.
Zeigen Sie:
i) Für [mm] A_{n} [/mm] paarweise disjunkt und [mm] \bigcup_{n} A_{n}=A [/mm] ist [mm] \mu(A)=\summe_{n}A_{n}. [/mm]
ii) Für [mm] A,B\in\IZ [/mm] gilt [mm] \mu(A)+\mu(B)=\mu(A\cap B)+\mu(A \cup [/mm] B).

Hallo. Kann mir vielleicht jemand mal eine Anstoß geben bei dieser Aufgabe, weil ich wirklich nicht verstehe, was genau ich hier machen muss...

Grüße
Emma

        
Bezug
Maße: Antwort
Status: (Antwort) fertig Status 
Datum: 13:05 Di 23.06.2015
Autor: fred97


> Es bezeichne [mm]P(\IZ)[/mm] die Potenzmenge von [mm]\IZ,[/mm] d.h. die Menge
> aller Teilmengen von [mm]\IZ.[/mm] Für [mm]A\subset \IZ[/mm] sei
> [mm]\mu:P(\IZ)\to [0,\infty][/mm] mit [mm]\mu(A)=\begin{cases} \#A, & A \mbox{ endlich} \\ \infty, & \mbox{ sonst} \end{cases},[/mm]
> wobei #A die Anzahl der Elemente in A bezeichnet.
>  Zeigen Sie:
>  i) Für [mm]A_{n}[/mm] paarweise disjunkt und [mm]\bigcup_{n} A_{n}=A[/mm]
> ist [mm]\mu(A)=\summe_{n}A_{n}.[/mm]

Das soll wohl lauten:  [mm]\mu(A)=\summe_{n}\mu(A_{n})[/mm]


>  ii) Für [mm]A,B\in\IZ[/mm] gilt [mm]\mu(A)+\mu(B)=\mu(A\cap B)+\mu(A \cup[/mm]
> B).
>  Hallo. Kann mir vielleicht jemand mal eine Anstoß geben
> bei dieser Aufgabe, weil ich wirklich nicht verstehe, was
> genau ich hier machen muss...

Du sollst in i) und ii) die jeweilige Formel zeigen. Wo hast Du Probleme ?

FRED

>  
> Grüße
>  Emma


Bezug
                
Bezug
Maße: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 Di 23.06.2015
Autor: Emma23

Also bei i) hab ich einfach Probleme dabei, vernünftig anzufangen. Das das so ist, wie es da steht, kann ich ja nachvollziehen, aber ich kann es irgendwie nicht zeigen.
Für ii) hab ich: [mm] A\cup B=A\cup(B\backslash [/mm] A) und [mm] B=(A\cap B)\cup(B\backslash [/mm] A)
[mm] \mu(A\cup B)=\mu(A)+\mu(B\backslash [/mm] A) und [mm] \mu(A\cap B)+\mu(B\backslash A)=\mu(B) [/mm]
Addition liefert [mm] \mu(A\cup B)+\mu(A\cap B)+\mu(B\backslash A)=\mu(A)+\mu(B)+\mu(B\backslash [/mm] A)
und somit [mm] \mu(A \cup B)+\mu(A\cap B)=\mu(A)+\mu(B) [/mm]

Bezug
                        
Bezug
Maße: Antwort
Status: (Antwort) fertig Status 
Datum: 08:57 Mi 24.06.2015
Autor: fred97


> Also bei i) hab ich einfach Probleme dabei, vernünftig
> anzufangen. Das das so ist, wie es da steht, kann ich ja
> nachvollziehen, aber ich kann es irgendwie nicht zeigen.
>  Für ii) hab ich: [mm]A\cup B=A\cup(B\backslash[/mm] A) und
> [mm]B=(A\cap B)\cup(B\backslash[/mm] A)
>  [mm]\mu(A\cup B)=\mu(A)+\mu(B\backslash[/mm] A) und [mm]\mu(A\cap B)+\mu(B\backslash A)=\mu(B)[/mm]
>  
> Addition liefert [mm]\mu(A\cup B)+\mu(A\cap B)+\mu(B\backslash A)=\mu(A)+\mu(B)+\mu(B\backslash[/mm]
> A)
>  und somit [mm]\mu(A \cup B)+\mu(A\cap B)=\mu(A)+\mu(B)[/mm]  


ii) ist O.K.

Zu i) Wir haben $ [mm] A_{n} [/mm] $ paarweise disjunkt und $ [mm] \bigcup_{n} A_{n}=A [/mm] $

Zu zeigen:  $ [mm] \mu(A)=\summe_{n}\mu(A_{n}) [/mm] $.

Fall 1: A ist unendlich. Dann ist [mm] \mu(A)=\infty. [/mm]

Annahme: [mm] \summe_{n}\mu(A_{n})< \infty. [/mm]

Dann gilt [mm] \mu(A_{n}) [/mm] < [mm] \infty [/mm] für alle n

und

[mm] \mu(A_{n}) \to [/mm] 0 für n [mm] \to \infty [/mm] (warum ?)

Es gibt also ein m [mm] \in \IN [/mm] mit [mm] \mu(A_{n})<1 [/mm] für n>m. Damit ist [mm] A_n [/mm] = [mm] \emptyset [/mm] für n>m (warum ?)

Fazit: [mm] $A=A_1 \cup ...\cup A_m$. [/mm]

Dann ist aber [mm] \mu(A) [/mm] < [mm] \infty. [/mm] Widerspruch !


Fall 2:  [mm] \mu(A) [/mm] < [mm] \infty. [/mm] Dann ist A endlich, somit sind alle [mm] A_n [/mm] ebenfalls endlich.

Es kann nicht sein, dass gilt: [mm] A_n \ne \emptyset [/mm] für unendlich viele n (warum?)

Somit ex. ein m [mm] \in \IN [/mm] mit [mm] A_n =\emptyset [/mm]  für n>m.

Fazit: [mm] $A=A_1 \cup ...\cup A_m$. [/mm]

Dann ist [mm] \mu(A)=\summe_{i=1}^{m}\mu(A_i) [/mm] (warum ?)

Also auch  $ [mm] \mu(A)=\summe_{n}\mu(A_{n}) [/mm] $.

FRED

Bezug
                                
Bezug
Maße: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:08 Do 25.06.2015
Autor: Emma23

Klasse! Vielen Dank das leuchtet mir ein :)

LG Emma

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de